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We investigate the nonlocal dynamics of a single particle placed in an infinite well with moving walls. 
It is shown that in this situation, the Schrödinger equation (SE) violates local causality by causing 
instantaneous changes in the probability current everywhere inside the well. This violation is formalized 
by designing a gedanken faster-than-light communication device which uses an ensemble of long narrow 
cavities and weak measurements to resolve the weak value of the momentum far away from the movable 
wall. Our system is free from the usual features causing nonphysical violations of local causality when 
using the (nonrelativistic) SE, such as instantaneous changes in potentials or states involving arbitrarily
high energies or velocities. We explore in detail several possible artifacts that could account for the failure 
of the SE to respect local causality for systems involving time-dependent boundary conditions.

© 2018 Published by Elsevier B.V.

1. Introduction

Nonlocality is the hallmark of quantum mechanics. It is gen-
erally taken for granted that nonlocality requires two or more 
particles, along the lines of the early paper by Einstein Podolsky 
and Rosen [1], subsequently put into a firm footing by Bell [2]. Al-
though it has been suggested that a single particle could in some 
instances exhibit nonlocality, such results have been disputed. This 
is particularly the case of the two main candidates for single par-
ticle nonlocality, the Aharonov-Bohm effect [3] and the entangle-
ment between spatial modes of a single photon (see [4] and Refs. 
therein for previous works), discussed respectively in Refs. [5,6]
and [7,10].

The present work introduces a new “candidate” for single par-
ticle nonlocality. It is based on the fact that the Schrödinger equa-
tion solved on a domain with moving boundaries gives rise to ap-
parent violations of local causality. It appears that time-dependent 
boundary conditions can potentially induce a nonlocal change in a 
region located far from the location of the moving boundary. Here 
we will examine the case of a particle in a box with infinitely high 
but moving walls. We will see that for quantum states extended all 
over the box, the moving walls generate instantaneously a current 
density almost everywhere in the box. We will indicate how this 

E-mail address: alexandre.matzkin@u-cergy.fr (A. Matzkin).

effect could be in principle tested, namely by making weak mea-
surements of the particle momentum in the central region of the 
box before light has the time to propagate from the walls to that 
region. To this effect, a gedanken faster-than-light communication 
device will be presented.

Let us state right away that we are not advocating the posi-
tion that it is possible to send a signal faster than the speed of 
light. Nevertheless, the present problem is interesting because the 
non-relativistic Schrödinger equation fails to prevent superlumi-
nal signaling in a situation where relativistic considerations do not 
seem to play a significant role. It is indeed well-known that the 
Schrödinger equation does not bound particle velocities, nor does 
it constrain instantaneous changes in potentials, but we will argue 
that in our system the nonlocal aspects do not rely on spurious 
violations of special relativity allowed by a employing a nonrela-
tivistic framework.

Note that the effect reported in this work is not due to a non-
dynamical phase term, such as a geometric phase (in which case 
we would have in the present context a non-adiabatic, non cyclic 
geometric phase [8,9]). There have been in the past claims that 
such non-dynamical phases in the same type of system that we 
will be investigating in this work could be envisaged as a specific 
form of “hidden” (i.e., non-signaling) non-locality [11–13]. We will 
see instead that the non-local aspect in our candidate system is 
not based on the existence of such phases.

https://doi.org/10.1016/j.physleta.2018.09.043
0375-9601/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.physleta.2018.09.043
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:alexandre.matzkin@u-cergy.fr
https://doi.org/10.1016/j.physleta.2018.09.043


U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JID:PLA AID:25329 /SCO Doctopic: Quantum physics [m5G; v1.243; Prn:2/10/2018; 16:19] P.2 (1-8)

2 A. Matzkin et al. / Physics Letters A ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

We will start by revisiting the treatment of systems with time-
dependent boundary conditions of the form ψ(x(t), t) = 0, where 
ψ is the wavefunction. Such systems are delicate to handle be-
cause from a formal point of view a different Hilbert space needs 
to be defined for each time t , so that a simple operation like taking 
the time derivative ∂tψ is not straightforward. We will introduce 
the system we will deal with — a particle in an expanding infi-
nite well — in the context of recent works [14–16] involving time 
dependent boundary conditions in Sec. 2.

Weak measurements were originally [17] introduced to mea-
sure an observable without significantly disturbing the system, 
allowing a subsequent standard (projective) measurement of a dif-
ferent observable. The outcome, known as a weak value, is not 
generally an eigenvalue (since the quantum state of the system is 
barely modified and no projection takes place) but still gives some 
information on the weakly measured observable, provided enough 
statistics are gathered by repeating the experience a certain num-
ber of times. In particular, it was shown [18] that the weak value 
of the momentum is directly related to the current density. We 
will recall these facts in Sec. 3 where we will present our main re-
sults concerning the instantaneous response of the current density 
to a change in the boundary conditions.

We will then proceed (Sec. 4) to analyze and discuss this novel 
type of nonlocality. The first issue we will address is no-signaling. 
No-signaling stands as the major constraint permitting the “peace-
ful coexistence” [19] of relativity and quantum mechanics. At first 
sight it would appear that no-signaling is respected here, since a 
single weak measurement does not convey any information, but 
the situation is more involved, and a protocol that would allow us 
to test in principle the possibility of signaling will be presented. 
Given that this nonlocal effect appears to conflict with the no-
signaling principle, we will critically assess the origins of nonlocal-
ity, in search of possible artifacts. We will then discuss the present 
results in the framework of the Bohmian model, where nonlocal-
ity is a built-in feature claimed to hold for individual events but is 
washed out at the statistical level. A summary and our conclusions 
will be given in Sec. 5.

2. A particle in an infinite well with moving walls

The particle in an infinite well with moving walls was widely 
investigated in the context of quantum chaos (see e.g. [20–23]). 
Another line of studies concerning this system involves the conjec-
ture of nonlocality induced by the moving wall on a localized state 
[12,24–29], that was recently disproved [16]. The Hamiltonian for 
a particle of mass m in an infinite well with the left wall fixed at 
x = 0 and the right wall moving according to the function L(t) is 
given by

H = P 2

2m
+ V (1)

V (x) =
{

0 for 0 ≤ x ≤ L(t)
+∞ otherwise.

(2)

The solutions of the Schrödinger equation ih̄∂tψ(x, t) = Hψ(x, t)
must obey the boundary conditions ψ(0, t) = ψ(L(t), t) = 0. The 
instantaneous eigenstates of H ,

φn(x, t) = √
2/L(t) sin [nπx/L(t)] (3)

verify H |φn〉 = En(t)|φn〉 where En(t) = n2h̄2π2/2mL2(t) are the 
instantaneous eigenvalues, but, due to the time varying boundary 
conditions, the φn are not solutions of the Schrödinger equation. 
To solve the Schrödinger equation different approaches have been 
proposed, like introducing a covariant time derivative [30], im-
plementing an ad-hoc change of variables [31], or relying on a 

time-dependent quantum canonical transformation [14,32]. Here 
we follow the latter option, as implemented in Ref. [16]. However, 
rather than going through the transformation to derive the solu-
tions for the general case (this is done in [16]), we will choose 
from the beginning a specific function L(t) for which analytic ba-
sis solutions of the Schrödinger equation are known. Indeed, for 
the linearly expanding case

L(t) = L0 + qt (4)

it can be checked by inspection [31] that

ψn(x, t) =
√

2

L0 + qt
exp

(
− iπ2h̄2n2t − iL0m2qx2

2h̄mL0 (L0 + qt)

)

× sin

(
nπx

L0 + qt

)
(5)

verifies the Schrödinger equation and the boundary conditions 
ψ(0, t) = ψ(L(t), t) = 0. Here, q > 0 represents the velocity of the 
expanding wall.

The set of ψn(x, t) (with n a positive integer) form a set of or-
thogonal basis functions useful to determine the time evolution of 
an initial arbitrary quantum state. The simplest initial state would 
be to pick a given ψn(x, t = 0); its evolution follows directly from 
Eq. (5). From a physical standpoint, it would be more realistic to 
start from the standard fixed wall eigenfunctions. A typical initial 
state would then be an eigenstate φn(x, t = 0) [see Eq. (3)] or a 
linear combination thereof, say

ψ(x, t = 0) =
∞∑

n=1

cnφn(x, t = 0) (6)

whose evolution is given by

ψ(x, t) =
∑
k,n

cn 〈ψk(t = 0)| φn(t = 0)〉ψk(x, t). (7)

We may want to include additional refinements, like allowing for 
a continuous transition from the fixed walls to the linear regime 
by setting

L(t) = L0 + qt(1 − e−γ t). (8)

This requires numerical solutions. The numerical method that will 
be used here is very similar to the one exposed in Ref. [22]; it is 
based on looking for numerical solutions ζ(x, t) by using expan-
sions over the instantaneous eigenstates of the form

ζ(x, t) =
∞∑

k=1

ak(t)φk(x, t). (9)

The coefficients ak(t) are retrieved by solving a system (arising by 
plugging ζ(x, t) in the Schrödinger equation) of coupled differential 
equations.

3. Current density and momentum weak values

3.1. Current density evolution

We first briefly look at the standard current density

j= 1

2m

(
ψ∗ Pψ − ψ Pψ∗) , (10)

where P is the momentum operator for the states in an expand-
ing infinite well. When the initial state is taken to be an eigenstate 
φn(x, 0) of the fixed walls well, given by Eq. (3) with all the ck
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