Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Research paper

Diverse stacked and entangled topologies in cadmium tricarballylate coordination polymers with nitrobenzene detection capability

Gregory A. Farnum^a, Brianna L. Martinez^a, Jodi L. Meyer^a, Sean R. Pumford^b, Robert L. LaDuca^{a,*}

^a Lyman Briggs College and Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
^b H. H. Dow High School, Midland, MI 48640, USA

ARTICLE INFO

Keywords: Cadmium Coordination polymer X-ray crystallography Entanglement Nitrobenzene detection

ABSTRACT

Hydrothermal reaction of cadmium salts, tricarballylic acid (H₃tca) and dipyridyl ligands resulted in generation of four coordination polymers that were characterized by single-crystal X-ray diffraction. The nature of the ancillary dipyridyl ligand plays a primary role in enforcing differing structural topologies across the series of new phases. $[Cd_2(tcaH)_2(dpe)_2]_n$ (1, dpe = 1,2-di(4-pyridyl)ethane) displays a 2-fold interpenetrated 3D 4¹²6³ pcu net based on 6-connected {Cd₂(O)(OCO)} cluster nodes. $[Cd(tcaH)(dpp)(H_2O)]_n$ (2, dpp = 1,2-di(4-pyridyl) propane) manifests a 1D + 1D \rightarrow 3D interlocked system of loop-containing perpendicular ribbon motifs. { $[Cd_4(tca)_2(Htca)(bpmp)_5(H_2O)_2)$ -27H₂O}_n (3, bpmp = bis(4-pyridylmethyl)piperazine) has intersecting $[Cd_4(tca)_2(Htca)(H_2O)_2]_n$ layer, $[Cd(bpmp)(H_2O)]_n$ chain, and $[Cd_2(bpmp)_3]_n$ ladder submotifs and forms a complicated 3,4,5-connected trinodal 3D self-penetrated network with (6.9²)(4²6³8)(4²6³8.9³10) topology. {[Cd (tcaH)(Hbpmp)][ClO₄):5.5H₂O₁_n (4) exhibits stacked cationic bilayer (4,4) grid slabs. All compounds showed potential as potential detectors for nitrobenzene in ethanol suspension via luminescence quenching, with 1 showing the highest uptake of analyte.

1. Introduction

Crystalline coordination polymers remain an important research focus, as due to their significant capabilities in gas storage [1], shapeselective separations [2], ion exchange [3], catalysis [4], and detection of nitroaromatic explosives traces [5]. Additional impetus for exploratory synthesis in this subgenre of chemistry is offered by the aesthetic beauty of their molecular networks [6], including interpenetrated [7] or self-penetrated topologies [8]. One of the most efficacious anionic ligand choices for the construction of functional coordination polymers is 1,3,5-benzenetricarboxylate (btc), which has afforded the classic and well-studied absorbent metal-organic framework material $[Cu_3(btc)_2]_n$ [9]. Inclusion of dipyridyl-type coligands and use of different metal atoms has expanded the structural scope and utility of this class of materials [10-13], such as extensive gas absorption and bright luminescence in a zinc 1,3,5-benzenetraicarboxylate coordination polymer incorporating a dipyridyl derivatized BODIPY-type ligand [10].

Less commonly employed have been aliphatic tricarboxylate ligands, which can induce greater degrees of conformational freedom due to their flexible C–C σ bonds. A series of 2D and 3D gadolinium and europium coordination polymers based on the methanetriacetate ligand has been reported by Ruiz-Pérez and coworkers [14,15]. The tricarballylate ligand (1,2,3-propanetricarboxylate, tca) has been found to regulate the biomineralization of calcite [16] and can also act as a carbon source for the growth of the fungus Exophiala spinifera [17]. Although the use of tricarballylate in the generation of coordination polymers has been infrequent, its derivatives can show extremely intriguing interlocked and self-penetrated topologies due to its conformational flexibility and multifarious possible binding and bridging $\{[Zn_3(tca)_2(bpmp)(Hbpmp)_2](ClO_4)_2 \cdot 5H_2O\}_n$ modes [17-22]. (bpmp = bis(4-pyridylmethyl)piperazine) possessed a unique self-penetrated 2-D layered topology with threaded-loop type linkages, while the oxoanion-free phase $\{[Zn_3(H_2O)_4(tca)_2(bpmp)_2] \cdot 8H_2O\}_n$ manifested a three-fold interpenetrated (6³)(6⁵8) 3,4-connected 3-D binodal network [18]. { $[Cd_2(tca)_2(Hdpa)_2]$ ·7H₂O}_n (dpa = 4,4'-dipyridylamine) exhibited 1-D ribbon motifs with pendant Hdpa⁺ ligands. $\{[Zn_3(tca)_2(dpa)_2] \cdot 2H_2O\}_n$ displayed a new 4,4-connected binodal $(4^{2}6^{2}8^{2})_{4}(6^{2}8^{4})$ topology, while the copper derivative [Cu(Htca)(dpa)]_n manifested a 3,5-connected binodal net with rare (4.6²)(4.6⁶8³) topology [19]. To the best of our knowledge, no tricarballylate-containing coordination polymers have as yet been prepared using the simple dipyridyl linkers 1,2-di(4-pyridyl)ethane (dpe) and 1,3-di(4-pyridyl)propane (dpp).

https://doi.org/10.1016/j.ica.2018.09.072 Received 4 September 2018; Accepted 24 September 2018 Available online 28 September 2018 0020-1693/ © 2018 Elsevier B.V. All rights reserved.

Inorganica Chimica Acta

^{*} Corresponding author at: Lyman Briggs College, E-30 Holmes Hall, Michigan State University, East Lansing, MI 48825, USA. *E-mail address:* laduca@msu.edu (R.L. LaDuca).

Table 1

Crystal and Structure Refinement Data for 1-4.

Data	1	2
Empirical Formula	CaeHaeCdoN4O12	C10H22CdN2O7
Formula Weight	941.49	502.79
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	C2/c
a(Å)	139255(10)	18 8260(14)
$h(\mathbf{A})$	12 7541(9)	14 6412(11)
$c(\hat{A})$	20.0983(14)	15 4657(11)
B(°)	96 4030(10)	112 5690(10)
$V(\Lambda^3)$	90.4030(10) 112.3090(10)	
7	4	2930. 4 (3)
$D (a am^{-3})$	1 762	1 607
D_{calc} (g cm ⁻¹)	1.763 1.697	
µ(IIIII) Min /max_trans	1.2/0 1.154	
hkl rongoo	16 - b - 16	10 - h - 10
nkt tallges	$-10 \le h \le 10$	$-10 \le h \le 10$ $15 \le h \le 15$
	$-13 \leq k \leq 13$	$-13 \le k \le 13$
Tetal and estimat	$-24 \le l \le 24$	$-10 \le l \le 10$
I otal reflections	21,/32	33,712
Dilque reflections	6541	4830
R(int)	0.0288	0.0454
Parameters	493	2/1
R_1 (all data)	0.0298	0.0369
$R_1 (I > 2\sigma(I))$	0.0241	0.0257
wR_2 (all data)	0.0598	0.0588
$wR_2 (I > 2 \sigma (I))$	0.0568	0.0544
Max/min residual (e /A ^o)	0.496/-0.412	0.472/-0.303
G.O.F.	1.027	1.041
Data	3	4
Data Empirical Formula	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆
Data Empirical Formula Formula Weight	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41
Data Empirical Formula Formula Weight Crystal system	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic
Data Empirical Formula Formula Weight Crystal system Space group	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i>	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic P2 ₁ /c
Data Empirical Formula Formula Weight Crystal system Space group a (Å)	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.3556(10)	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic P2 ₁ /c 17.1148(13)
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.3556(10) 12.0599(10)	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic P2 ₁ /c 17.1148(13) 20.5960(16)
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å)	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.3556(10) 12.0599(10) 40.705(3)	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 17.1148(13) 20.5960(16) 8.7252(7)
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta(\gamma)$	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10)	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 17.1148(13) 20.5960(16) 8.7252(7) 98.8400(10)
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta^{(\circ)}$ V (Å ³)	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9)	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 17.1148(13) 20.5960(16) 8.7252(7) 98.8400(10) 3039.1(4)
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic P2 ₁ /n 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9) 2	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 17.1148(13) 20.5960(16) 8.7252(7) 98.8400(10) 3039.1(4) 4
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta^{(°)}$ V (Å ³) Z D_{cabc} (g cm ⁻³)	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic P2 ₁ /n 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9) 2 1.551	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ 4 \\ 1.666 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\beta(^{\circ})$ $V(\hat{A}^{3})$ Z $D_{calc} (g cm^{-3})$ $\mu(mm^{-1})$	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic P2 ₁ /n 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9) 2 1.551 0.787	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 17.1148(13) 20.5960(16) 8.7252(7) 98.8400(10) 3039.1(4) 4 1.666 0.886
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans.	3 C ₉₈ H ₁₇₄ Cd ₄ N ₂₀ O ₄₇ 2834.18 Monoclinic P2 ₁ /n 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9) 2 1.551 0.787 0.8846	4 C ₂₂ H ₃₈ CdClN ₄ O ₁₆ 762.41 Monoclinic P2 ₁ /c 17.1148(13) 20.5960(16) 8.7252(7) 98.8400(10) 3039.1(4) 4 1.666 0.886 0.6920
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges	$\begin{array}{c} 3 \\ \\ C_{98}H_{174}Cd_4N_{20}O_{47} \\ 2834.18 \\ \\ Monoclinic \\ P_{21}/n \\ 12.3556(10) \\ 12.0599(10) \\ 40.705(3) \\ 90.5390(10) \\ 6065.1(9) \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ \hline Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ 4 \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) b (Å) c (Å) $f^{(*)}$ V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. hkl ranges	3 $C_{98}H_{174}Cd_4N_{20}O_{47}$ 2834.18 Monoclinic P_{21}/n 12.3556(10) 12.0599(10) 40.705(3) 90.5390(10) 6065.1(9) 2 1.551 0.787 0.8846 $-14 \le h \le 14$ $0 \le k \le 14$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P_{21}/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges	$\begin{array}{c} 3 \\ \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 49 \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \le h \le 20 \\ -20 \le h \le 20 \\ -24 \le k \le 24 \\ -10 \le l \le 10 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta^{(°)}$ V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges Total reflections	$\begin{array}{c} 3 \\ \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137.985 \\ \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 24 \\ -10 \leq l \leq 10 \\ 24.378 \\ \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\beta(^{\circ})$ $V(\hat{A}^{3})$ Z $D_{calc} (g cm^{-3})$ $\mu(mm^{-1})$ Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections	$\begin{array}{c} 3 \\ \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137,985 \\ 11.266 \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \\ -10 \leq l \leq 10 \\ 24,378 \\ 5540 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\beta(^{\circ})$ $V(\hat{A}^{3})$ Z $D_{calc} (g cm^{-3})$ $\mu(mm^{-1})$ Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections <i>R</i> (int)	$\begin{array}{c} \mathbf{S} \\ \hline \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137,985 \\ 11,266 \\ 0.0702 \\ \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ 4 \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \\ -10 \leq l \leq 10 \\ 24,378 \\ 5540 \\ 0.0360 \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections R(int) Parameters	$\begin{array}{c} 3 \\ \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P}_{21}/n \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137,985 \\ 11.266 \\ 0.0702 \\ 974 \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ \hline Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \\ -10 \leq l \leq 10 \\ 24,378 \\ 5540 \\ 0.0360 \\ 435 \\ \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. hkl ranges Total reflections Unique reflections R(int) Parameters R_i (all data)	$\begin{array}{c} 3 \\ \\ \hline \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{C}\mathbf{d}_4\mathbf{N}_{20}\mathbf{O}_{47} \\ 2834.18 \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137,985 \\ 11,266 \\ 0.0702 \\ 974 \\ 0.0640 \\ \end{array}$	
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta(^{\circ})$ V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections R(int) Parameters R_1 (all data) R_1 ($I > 2\sigma$ (I))	$\begin{array}{c} 3 \\ \\ \hline \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{C}\mathbf{d}_4\mathbf{N}_{20}\mathbf{O}_{47} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P2}_1/n \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 49 \\ 137,985 \\ 11,266 \\ 0.0702 \\ 974 \\ 0.6440 \\ 0.0531 \\ \end{array}$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ 4 \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \le h \le 20 \\ -20 \le h \le 20 \\ -20 \le h \le 20 \\ -24 \le k \le 24 \\ -10 \le l \le 10 \\ 24,378 \\ 5540 \\ 0.0360 \\ 435 \\ 0.0612 \\ 0.0538 \\ \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group a (Å) b (Å) c (Å) $\beta^{(r)}$ V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections R_1 (all data) R_1 ($I > 2\sigma$ (I)) W_R (all data)	$\begin{array}{c} 3 \\ \\ \hline C_{98}H_{174}Cd_4N_{20}O_{47} \\ 2834.18 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \\ -10 \leq l \leq 10 \\ 24.378 \\ 5540 \\ 0.0360 \\ 435 \\ 0.0612 \\ 0.0538 \\ 0.1613 \\ \end{array}$
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\beta(^{\circ})$ $V(\hat{A}^3)$ Z $D_{calc} (g cm^{-3})$ $\mu(mm^{-1})$ Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections $R_1(ul > 2\sigma(l))$ $wR_2 (all data)$ $wR_2 (l > 2 \sigma(l))$	$\begin{array}{c} 3 \\ \\ \hline \\ \mathbf{C}_{98}\mathbf{H}_{174}\mathbf{Cd_4N_{20}O_{47}} \\ 2834.18 \\ \\ \mathbf{Monoclinic} \\ \mathbf{P2_1/n} \\ \mathbf{12.3556(10)} \\ \mathbf{12.0599(10)} \\ \mathbf{40.705(3)} \\ \mathbf{90.5390(10)} \\ \mathbf{6065.1(9)} \\ 2 \\ 1.551 \\ 0.787 \\ 0.8846 \\ -14 \leq h \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq k \leq 14 \\ 0 \leq l \leq 49 \\ 137,985 \\ 11.266 \\ 0.0702 \\ 974 \\ 0.0640 \\ 0.0531 \\ 0.1264 \\ 0.1217 \end{array}$	
Data Empirical Formula Formula Weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\beta(^{\circ})$ $V(\hat{A}^3)$ Z $D_{calc} (g cm^{-3})$ $\mu(mm^{-1})$ Min./max. trans. <i>hkl</i> ranges Total reflections Unique reflections Unique reflections $R_1(all data)$ $R_1 (l > 2\sigma(I))$ $wR_2 (all data)$ $wR_2 (l > 2 \sigma(J))$ Max/min residual (e^-/\hat{A}^3)	$\begin{array}{c} 3 \\ \\ \hline C_{98}H_{174}Cd_4N_{20}O_{47} \\ 2834.18 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \textbf{4} \\ \hline C_{22}H_{38}CdClN_4O_{16} \\ 762.41 \\ Monoclinic \\ P2_1/c \\ 17.1148(13) \\ 20.5960(16) \\ 8.7252(7) \\ 98.8400(10) \\ 3039.1(4) \\ \textbf{4} \\ 1.666 \\ 0.886 \\ 0.6920 \\ -20 \leq h \leq 20 \\ -24 \leq k \leq 24 \\ -10 \leq l \leq 10 \\ 24,378 \\ 5540 \\ 0.0360 \\ 435 \\ 5540 \\ 0.0360 \\ 435 \\ 0.0612 \\ 0.0538 \\ 0.1613 \\ 0.1530 \\ 1.871/-2.140 \\ \end{array}$

The zinc and cadmium tricarballylate coordination polymers in these previous studies all exhibited fluorescent behavior upon irradiation with ultraviolet light, due to π - π * transitions within the aromatic dipyridyl coligands, but were not assayed as detectors or sensors. Nevertheless, the visible light spectral window of this class of material could prove beneficial for the detection of nitroaromatics via luminescence quenching. In this contribution we present the synthesis, single-crystal structural determination, and nitrobenzene detection assays for four new cadmium-based coordination polymers containing the tricarballylate ligand: $[Cd_2(tcaH)_2(dpe)_2]_n$ (1), $[Cd(tcaH)(dpp)(H_2O)]_n$ (2), $\{[Cd_4(tca)_2(Htca)(bpm)_5(H_2O)_2] \cdot 27H_2O\}_n$ (3), and $\{[Cd(tcaH)(Hbpmp)](ClO_4) \cdot 5.5H_2O\}_n$ (4). Thermal properties of the non-per-chlorate containing materials are also discussed herein.

 Table 2

 Selected Bond distance (Å) and angle (°) data for 1.

	-		
Cd1-07	2.2337(16)	N2 ^{#2} -Cd1-O1	85.41(7)
Cd1012#1	2.2810(16)	N1-Cd1-O1	97.83(7)
Cd1-N2 ^{#2}	2.3029(19)	O2-Cd1-O1	54.96(6)
Cd1–N1	2.3085(19)	O8-Cd2-N4#2	88.34(7)
Cd1-O2	2.3451(18)	08-Cd2-N3	88.39(7)
Cd1-O1	2.4310(18)	N4#2-Cd2-N3	176.32(7)
Cd2-08	2.3262(17)	O8-Cd2-O3 ^{#3}	85.49(6)
Cd2-N4#2	2.330(2)	N4#2-Cd2-O3#3	95.54(7)
Cd2–N3	2.3367(19)	N3-Cd2-O3#3	85.87(7)
Cd2-O3#3	2.3439(18)	O8-Cd2-O11 ^{#1}	137.87(7)
Cd2-011#1	2.3554(16)	N4 ^{#2} -Cd2-O11 ^{#1}	89.49(7)
Cd2-O4#3	2.5023(18)	N3-Cd2-O11#1	91.81(6)
Cd2-012#1	2.5746(18)	O3 ^{#3} -Cd2-O11 ^{#1}	136.56(6)
07–Cd1–O12 ^{#1}	111.03(6)	O8-Cd2-O4#3	138.01(6)
07-Cd1-N2 ^{#2}	95.41(7)	N4 ^{#2} -Cd2-O4 ^{#3}	85.40(7)
O12-Cd1-N2 ^{#2}	85.19(7)	N3-Cd2-O4#3	98.17(7)
07-Cd1-N1	86.71(7)	O3 ^{#3} -Cd2-O4 ^{#3}	54.03(6)
012 ^{#1} -Cd1-N1	90.91(7)	O11 ^{#1} -Cd2-O4 ^{#3}	83.61(6)
N2 ^{#2} -Cd1-N1	176.02(7)	O8-Cd2-O12 ^{#1}	86.18(6)
07-Cd1-O2	146.16(6)	N4 ^{#2} -Cd2-O12 ^{#1}	98.45(6)
012 ^{#1} -Cd1-O2	102.01(6)	N3-Cd2-O12#1	79.65(6)
N2 ^{#2} -Cd1-O2	94.39(7)	O3 ^{#3} -Cd2-O12 ^{#1}	163.47(6)
N1-Cd1-O2	85.64(7)	011 ^{#1} -Cd2-012 ^{#1}	52.62(5)
07-Cd1-O1	93.70(6)	O4 ^{#3} -Cd2-O12 ^{#1}	135.81(5)
012 ^{#1} -Cd1-O1	154.24(6)		

Symmetry transformation to generate equivalent atoms: #1 x, -y + 3/2, z - 1/2; #2 x + 1, y, z; #3 x, y + 1, z.

2. Experimental section

2.1. General considerations

Cadmium salts, tricarballylic acid, dpe, and dpp were purchased commercially. Bis(4-pyridylmethyl)piperazine was prepared using a published procedure [23]. Water was deionized above $3 M\Omega$ -cm inhouse. IR spectra were recorded on powdered samples using a Perkin Elmer Spectrum One instrument. The luminescence spectra were obtained with a Hitachi F-4500 Fluorescence Spectrometer. *CAUTION!* Perchlorate compounds can be explosive! While no issues arose during this study, minimum quantities were used and no perchlorate-containing solids were heated above their synthesis temperature.

2.2. Preparation of $[Cd_2(tcaH)_2(dpe)_2]_n$ (1)

CdSO₄·8H₂O (63 mg, 0.18 mmol), dpe (68 mg, 0.37 mmol) and tricarballylic acid (33 mg, 0.19 mmol) were placed into 5 mL distilled H₂O in a 15 mL screw-cap glass vial. The vial was sealed and heated in an oil bath at 80 °C for 72 hrs, whereupon it was cooled slowly to 25 °C. Colorless blocks of 1 (66 mg, 78% yield based on Cd) were isolated after washing with distilled water and acetone, and drying in air. Anal. Calc. for C₃₆H₃₆Cd₂N₄O₁₂ 1: C, 45.92; H, 3.85; N, 5.95% Found: C, 45.77; H, 3.73; N, 5.89%. IR (ν): 3251 (w, br), 1702 (m), 1612 (m), 1579 (s), 1426 (w), 1397 (s), 1312 (w), 1258 (w), 1226 (w), 1098 (w), 1018 (w), 832 (m), 808 (w), 722 (w), 675 (w) cm⁻¹.

2.3. Preparation of $[Cd(tcaH)(dpp)(H_2O)]_n$ (2)

Cd(ClO₄)₂·6H₂O (56 mg, 0.18 mmol), dpp (73 mg, 0.37 mmol) and tricarballylic acid (33 mg, 0.19 mmol) were placed into 5 mL distilled H₂O in a 15 mL screw-cap glass vial. The vial was sealed and heated in an oil bath at 80 °C for 72 hrs, whereupon it was cooled slowly to 25 °C. Colorless blocks of **2** (82 mg, 91% yield based on Cd) were isolated after washing with distilled water and acetone, and drying in air. Anal. Calc. for C₁₉H₂₂CdN₂O₇ **2**: C, 45.39; H, 4.41; N, 5.57% Found: C, 45.31; H, 4.36; N, 5.92%. IR ($\bar{\nu}$): 3298 (w, br), 2926 (w), 2500 (w, br), 1717 (s), 1610 (m), 1577 (s), 1560 (s), 1542 (w), 1503 (w), 1450 (m), 1417 (s) 1359 (s), 1314 (m), 1278 (m), 1224 (m), 1193 (s), 1172 (m), 1097 (w),

Download English Version:

https://daneshyari.com/en/article/11009826

Download Persian Version:

https://daneshyari.com/article/11009826

Daneshyari.com