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STOCHASTIC SOLUTIONS FOR SPACE-TIME FRACTIONAL

EVOLUTION EQUATIONS ON BOUNDED DOMAIN

Lorenzo Toniazzi

Abstract. Space-time fractional evolution equations are a powerful tool to model diffu-
sion displaying space-time heterogeneity. We prove existence, uniqueness and stochastic
representation of classical solutions for an extension of Caputo evolution equations featur-
ing time-nonlocal initial conditions. We discuss the interpretation of the new stochastic
representation. As part of the proof a new result about inhomogeneous Caputo evolution
equations is proven.

1. Introduction

It is a classical result that the solution to the standard heat equation ∂tu = Δu, u(0) = φ0

allows the stochastic representation u(t, x) = E[φ0(X
x,2(t))], where Xx,2 is a Brownian

motion started at x ∈ R
d. Space-time fractional evolution equations (EEs) extend the heat

equation by introducing space-time heterogeneity. This often is done by considering the

Caputo EE Dβ
0u = −(−Δ)

α
2 u, where one substitutes the local operators ∂t and Δ with

fractional analogues. Respectively, the Caputo derivative Dβ
0u(t) = cβ

∫ t
0 u

′(r)(t− r)−β dr

and the fractional Laplacian (−Δ)
α
2 u(x) = F−1(|ξ|αFu(ξ))(x), where β ∈ (0, 1), α ∈ (0, 2),

cβ = Γ(1 − β)−1 and F is the Fourier transform (for standard references see [21, 14]). It
is well known that the fundamental solution to the Caputo EE is the law of the non-
Markovian anomalous diffusion Y x(t) = Xx,α(τ0(t)) (see, e.g., [39]). Here Xx,α is the
rotationally symmetric α-stable Lévy process started at x ∈ R

d and τ0(t) is the inverse
process of the β-stable subordinator Xβ(t). The density of this beautiful formula was
first observed in [43]. The time change interpretation first appeared in [35, 38], based on
[5]. The process Y x displays space-heterogeneity due to the jump nature of Xx,α. Also
time-heterogeneity features in Y x, as the time change t �→ τ0(t) is constant precisely when
the subordinator t �→ Xβ(t) jumps, so that t �→ Y x(t) is trapped on such time intervals.
This interesting trapping phenomenon leads to the process Y x spreading at a slower rate
than Xx,α. Indeed, in the physics literature the anomalous diffusion Y x is often referred
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