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ZERO DISTRIBUTION OF SOME SHIFT POLYNOMIALS

ILPO LAINE

Abstract. Given an entire function f of finite order ρ, let g(f) :=
∑k

j=1 bj(z)f(z+ cj) be a shift polynomial of f with small meromorphic

coefficients bj in the sense of O(rλ+ε)+S(r, f), λ < ρ. Provided α, β, b0
are similar small meromorphic functions, we consider zero distribution
of fn(g(f))s − b0, resp. of g(f)− αfn − β.

1. Introduction

During the last decade, Nevanlinna theory for differences (and shifts)
of meromorphic functions has been a topic of substantial interest, see e.g.
[6], to some extent due to the extensive investigations related to discrete
Painlevé equations. The reader is invited to consult the survey [3] on this
topic.

In this paper, we assume familiarity with the key notions and results in
the Nevanlinna theory [7]. In addition to the main theorems in Nevanlinna
theory, we frequently need to apply the notion of exponent of convergence
λ(f) for zeros of f , the Clunie reasoning, see [8], and the notion of small
functions with respect to a given meromorphic function. Unless otherwise
specified, a meromorphic function α is said to be small in this paper, relative
to a given meromorphic function f of finite order ρ, if for any ε > 0, and for
some λ < ρ, T (r, α) = O(rλ+ε) + S(r, f) outside of a possible exceptional
set of finite logarithmic measure.

The starting point to us is the following simple result proved in [9], see
Theorem 2 therein:

Theorem A. Let f(z) be a transcendental entire function of finite order,
and c be a non-zero complex constant. Then for n ≥ 2, f(z)nf(z+c) assumes
every non-zero value a ∈ C infinitely often.

This paper prompted a number of related investigations during the last
ten years. As to these developments, we refer to [1], Chapter 4.1 and the
references given therein. Typical results in this direction are: (1) Pro-
vided p(z) is a non-vanishing polynomial, then f(z)nf(z + c) − p(z), resp.
f(z)n(f(z+ c)−f(z))−p(z), admits infinitely many zeros, see [1], Theorem
4.1.3 and Theorem 4.1.4. (2) Analyzing zeros, resp. a-points, a �= 0, for
f(z)n(f(z + c)− f(z)), n ≥ 1, see [1], Chapter 4.1.
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