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We prove that every Banach space which admits an unconditional basis can be 
renormed to contain a constant width set with empty interior, thus guaranteeing, 
for the first time, existence of such sets in a reflexive space. In the isometric case 
we prove that normal structure is characterized by the property that the class of 
diametrically complete sets and the class of sets with constant radius from the 
boundary coincide.

© 2018 Elsevier Inc. All rights reserved.

0. Introduction

Sets of constant width, i.e. sets such that the distance between any pair of parallel hyperplanes supporting 
the set is constant, were first studied (at least in the Euclidean plane) by Euler [10, paragraph 5] in 
the eighteenth century; the most famous non-trivial example is probably the Reuleaux triangle. At the 
beginning of the last century, Meissner [20] noticed that sets of constant width have the property that 
adding any point to the set produces a set of strictly larger diameter. The property is now called diametrical 
completeness.

The two properties coincide in 2-dimensional and in Euclidean spaces, but they fail to coincide in some 
3-dimensional Minkowski spaces, as first noted in [9]. Later [28, Corollary 22] it was shown that most norms 
on Rd (in the sense of Baire category) give rise to diametrically complete sets which are not of constant 
width.

In finite dimensional spaces, both properties have been widely investigated, and classical results can be 
found for example in [19], [28] and the references therein.
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In infinite dimensional spaces, the concept was slower to take hold. It is easy to verify, and it seems futile 
to attribute this folklore result to anyone particular, that the positive part of the unit ball of c0 is a set 
which has both constant width and empty interior, strongly contrasting with the intuitive idea of constant 
width sets as being “plump” sets, which is familiar from the finite dimensional setting.

In 1975, Holmes, Scranton and Ward [12] proved that if M is an M -ideal in a Banach space X, then 
the sets of best approximation PM (x) : = {y : y ∈ M, ‖x − y‖ = d(x, M)} are constant width sets in M . 
In 1979, Behrends [2, Proposition 6.6] gave a more natural proof of this. The simplest non-trivial example 
of an M -ideal is of course the subspace c0 in �∞. If x ∈ �∞ is the constant sequence (1

2 , 
1
2 , 

1
2 , . . .), then 

the set of best approximations PM (x) is just the positive part of the unit ball of c0. So this example can 
be interpreted as a byproduct of the study of M -ideals. However, it is easy to check this example without 
knowing what M -ideals are. None of these authors used the constant width terminology, and it was several 
years before interest picked up.

Behrends and Harmand [3] defined a class of closed convex sets called pseudoballs (see §2). It follows from 
the proof of [3, Theorem 3.4] that every pseudoball is a set of constant width, but again they did not use this 
terminology. They did show that any Banach space containing a non-trivial pseudoball necessarily contains 
an almost isometric copy of c0. So the example from the previous paragraph is somehow ubiquitous. The first 
serious study of sets of constant width in infinite dimensions was made by Payá and Rodriguez-Palacios [25], 
still motivated by the study of M -ideals. Some scattered results appeared in the following twenty years. 
Then in 2006, Moreno, Papini and Phelps published two papers [23,24] containing a thorough study of both 
constant width and diametrically complete sets in the spaces C(K), and an exhaustive report of the results 
obtained until that time.

In a d-dimensional Banach space, it is almost obvious that a set of constant width w must have affine 
dimension d, and thus non-empty interior. Less obvious is that it must contain a ball of radius w/(d + 1). 
This was proved by Leichtweiss [13, Theorems 3 and 4], who also showed that this estimate is best possible, 
as exemplified by X = R

d with the norm ‖(x1, · · · , xd)‖ =
∑d

i=1 |xi| + | 
∑d

i=1 xi|, and C being the convex 
hull of {0, e1, e2, · · · , ed}. The dual inequality for balls containing a given set is due to Bohnenblust [4]. For 
other recent work on this topic, see [27, Theorem 2], [22, Theorem 2], [5, (5)], and the references therein.

This suggests that infinite dimensional Banach spaces may contain sets of constant width with empty 
interior, and we have seen that this is the case in c0. On the other hand, �1 does not contain any sets 
of constant width other than balls. To see this, note first that the unit ball of c0 is clearly the absolutely 
convex hull of a proper face, which implies by [14, Proposition 8] that every pseudolinear map on c0 is linear; 
we refer to [14] for appropriate definitions, since we will not need them again here. Then [14, Theorem 7]
tells us that �1 does not contain any nontrivial weak* compact set of constant width. The conclusion then 
follows from [25, Corollary 1.2], which asserts that any set of constant width in a dual space must be weak* 
compact. However the existence of sets of constant width with empty interior in some reflexive Banach 
spaces has until now remained an open question.

Research then moved toward the formally weaker question, of looking for diametrically complete sets 
with empty interior. The first such attempts in Banach spaces looked for isometric results, in particular 
trying to characterize Banach spaces containing such sets. Though a full characterization has not yet been 
obtained, Maluta and Papini [18] proved existence of such sets in many reflexive Banach spaces, including 
spaces with good geometric properties [17].

More recently, attention has turned to the isomorphic setting, where existence of sets with the requested 
properties is guaranteed up to a suitable renorming of the space. Specifically, it is shown in [6] that many 
reflexive Banach spaces contain diametrically complete sets with empty interior. We strengthen this here, 
proving also that many reflexive Banach spaces contain constant width sets with empty interior.

Organization of the paper is as follows.
In Section 1 we present the basic definitions and some known results needed in the paper.
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