Accepted Manuscript

Sulfurization of Hematite $\mathrm{Fe_2O_3}$ and Anatase $\mathrm{TiO_2}$ by Annealing in $\mathrm{H_2S}$

Woo Jung Shin, Araceli Hernández Granados, Wen-Hsi Huang, Hailin Hu, Meng Tao

PII:	S0254-0584(18)30881-2
DOI:	10.1016/j.matchemphys.2018.10.008
Reference:	MAC 21023
To appear in:	Materials Chemistry and Physics
Received Date:	14 November 2017
Accepted Date:	05 October 2018

Please cite this article as: Woo Jung Shin, Araceli Hernández Granados, Wen-Hsi Huang, Hailin Hu, Meng Tao, Sulfurization of Hematite Fe_2O_3 and Anatase TiO_2 by Annealing in H_2S , *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.10.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sulfurization of Hematite Fe₂O₃ and Anatase TiO₂ by Annealing in H₂S

Woo Jung Shin^a, Araceli Hernández Granados^{c,d}, Wen-Hsi Huang^a, Hailin Hu^c and Meng Tao^b

^a School for Engineering of Matter, Transport and Energy and ^b School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA

^c Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Temixco, Morelos, 62580, Mexico

^d Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, 62209, Mexico

* Correspondence: Prof. Meng Tao (meng.tao@asu.edu), Woo Jung Shin (wshin4@asu.edu), Tel: +1 480-965-9845

ABSTRACT

Spray-deposited hematite Fe₂O₃ and spin-coated anatase TiO₂ thin films were annealed under H₂S in order to investigate the effect of sulfurization by H₂S. Sulfurized films were characterized using UV–vis spectrophotometry, X-ray diffractometry, Raman spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Sulfurized Fe₂O₃ and TiO₂ films are composed of multiple phases. The Fe₂O₃ film undergoes phase transformation from hematite into a mixture of magnetite (Fe₃O₄) and pyrrhotite (FeS) at annealing temperatures above 250°C. At 450°C α -Fe₂O₃ is fully transformed into pyrite (FeS₂). The TiO₂ film transforms into a mixture of TiO₂ and TiS₂. TiS₂ formation begins at temperatures above 550°C. At 700°C, TiO₂ is completely transformed into TiS₂.

1. INTRODUCTION

Hematite Fe₂O₃ and anatase TiO₂ have received growing interests for solar energy applications such as solar water splitting [1-4] and photovoltaic solar cells [5-8]. They are nontoxic, low-cost, earth-abundant, and environmentally-friendly, which are necessary properties for mass production of their devices for solar energy conversion. However, the realized solar energy conversion efficiencies from devices based on these materials have been insufficient due to a number of issues, such as poor light absorption, short lifetime of photo-excited charge carriers, and large bandgaps [9]. On the other hand, pyrite FeS₂ and titanium disulfide TiS₂ have demonstrated promising properties for applications in photovoltaic solar cells [10] and solar water splitting [11]. FeS₂ has a smaller bandgap (0.95 eV indirect), high absorption coefficient ($\alpha > 10^5$ cm⁻¹ for hv > 1.3 eV), and sufficient minority carrier diffusion length (100–1000 nm) [12]. FeS₂ solar cells have demonstrated a high quantum efficiency of 90% and a high photocurrent of 42 mA-cm⁻² [10]. In solar water splitting, it possesses excellent stability against photo-corrosion in comparison with other chalcogenide semiconductors (e.g. CdS or CdSe) [11]. For TiS₂, Hall and thermoelectric power measurements suggest that TiS₂ is a semiconductor [13]. TiS₂ has recently been used as the charge transport layer in perovskite solar cells, resulting in a high cell efficiency of 17.37% because of its high carrier mobility and conductivity [14].

It is well known that for a highly-efficient solar cell, a direct bandgap around 1.4 eV is highly desirable. For solar water splitting, the optimum bandgap is about 1.7 eV direct. A major disadvantage of TiO_2 is that it is a semiconductor with a wide bandgap of 3.2 eV and thus can only utilize the ultraviolet (UV) portion of the solar spectrum below 388 nm. That portion of the solar spectrum makes up just 4–5% of the energy from sunlight. α -Fe₂O₃ has a slightly-lower bandgap of 2.1 eV which theoretically allows the utilization of approximately 40% of the solar spectrum [15]. Therefore, narrowing the bandgap of these semiconductors to

Download English Version:

https://daneshyari.com/en/article/11011451

Download Persian Version:

https://daneshyari.com/article/11011451

Daneshyari.com