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ARTICLE INFO ABSTRACT
Article history: 1,3-P,N-ligands are prominent hybrid ligands which provide valuable mononuclear transition metal com-
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recent developments in an expanding number of applications, including coordination chemistry,
catalysis, and bio-inorganic applications.
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1. Introduction
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The translation of the activity and reactivity of the less L. p- M1 Hemi- b M]--[M]
abundant second and third row transition metal systems to P lability
cheaper, more available, but generally less reactive first row met- Active, Passive, %?&"Eé’;%
als, requires successfully combining metal- with ligand-based Cooperative Spectator) . litation

reactivity [1]. This approach of ‘ligand cooperativity’, or ‘non inno-
cence’ for redox active ligands, can be pursued with hybrid ligands,
which combine the distinctive bonding preferences of different
donor atoms to provide cooperative metal-ligand interactions such
as hemilability, ligand assisted substrate recognition, substrate
activation and proton shuttling (Fig. 1) [2,3], and have found
prominent applications in homogeneous catalysis [4].

Since their introduction in 1972 [5], the hybrid 1,3-P,N-ligands
(Fig. 2) have provided rich coordination chemistry, due to the fruit-
ful combination of a soft phosphorus donor with a hard nitrogen
[6,7]. Besides rich multinuclear chemistry in which the ligands
coordinate in a bridging mode between (hetero)metals to facilitate
the formation of metal-metal bonds [8,9], they also form
N-monodentate [10], P-monodentate [11,12], and bidentate
mononuclear complexes [12] (Fig. 3), which are active in catalytic
reactions including the Ru(Il)-catalyzed hydration of nitriles [12f],
the Ru(ll)-catalyzed hydrogenation of alkynes and transfer
hydrogenation of ketones [12e], the Ru(ll)-catalyzed
hydrogenation of alkenes [12d], the Rh(I)- and Ir(I)-catalyzed
hydroformylation of alkenes [8c,12a], the Pd(Il)-catalyzed
carbonylation of alkynes [11b,12b,c], and the Pd(Il)-catalyzed
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Fig. 1. Cooperative P,N-ligands.

Fig. 2. 1,3-P,N-ligands in recent mononuclear complexes.

Fig. 3. 1,3-P,N-ligands as hemilabile cooperative ligands.

Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions
[13]. The number of catalytic applications is still growing.

To provide insight into why these ligands are so valuable, we
review recent developments in mononuclear 1,3-P,N chemistry
from 2009 [6,7] to mid-2017 with a focus on catalysis and coordi-
nation chemistry. Excluded are systems in which one of the donors
is unavailable (e.g., P-oxidized systems, 2-pyrrolyl-phosphanes, P-
or N-cationic P,N-systems) [14,15], those that contain an additional
donor atom that can actively participate (e.g., bis-/tris-(pyridyl)
phosphanes, ClickPHOS, N,N’-coordinating phosphaguanidinates,
1,3,5-P,N,X-ligands) [16,17] or ligands that are conformationally
restricted in such a fashion that their chemistry is not comparable
to the titular compounds (e.g., benzaphospholes, 1,3,5-triaza-7-
phosphaadamantate (PTA) ligands) [18]. After an overview of
synthetic developments, recent 1,3-P,N-containing mononuclear
complexes will be discussed in ascending Group number.

2. Synthesis

Recent synthetic developments are discussed first to provide
background for the ligands discussed in Sections 2—7.

2.1. 2-Pyridyl- and 2-imidazolylphosphanes

Most reports improve on the syntheses and expand on the
substituent scope of known ligand systems. To overcome the lim-
ited access to substituted 2-pyridylphosphanes (PyPPh,) [7a,12c],
cross-coupling reactions have been developed to selectively
access their 6-substituted precursors 1.2 by using Cu(I)-catalysis
for t-alkyl groups (Scheme 1; five examples, 74-92%, cat. loading
3.5-10 mol%) or a Ni(ll)-catalysis/POCl; sequence for others
(eight examples; step 1: 53-98%, cat. loading 0.3-3 mol%; step 2:
60-94%) [19]. Subsequent couplings provide 1.3 (10 examples,
58-86%). Nickel was also used to cross couple 2-pyridyl nitrile with
HPPh, to PyPPh, (40%; 10 mol% Ni(COD),+8-hydroxyquinoline,
90 °C, 16 h) [20]. A primary 2-pyridylphosphane has been cyclo-
condensed to phospholane 2.1 (Scheme 2) [21].
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