international journal of hydrogen energy XXX (2018) i-10

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

The enhanced photocatalytic hydrogen production of the fusiform g-C₃N₄ modification CaTiO₃ nano-heterojunction

Jiaqi Pan, Ziyuan Jiang, Shixuan Feng, Chuang Zhao, Zongjun Dong, Beibei Wang, Jingjing Wang, Changsheng Song, Yingying Zheng, Chaorong Li^{*}

Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China

ARTICLE INFO

Article history: Received 27 June 2018 Received in revised form 12 August 2018 Accepted 17 August 2018 Available online xxx

Keywords:

Photocatalytic hydrogen production Nano-heterojunction Cycling stability Interface

ABSTRACT

The fusiform g-C₃N₄/CaTiO₃ nano-heterojunctions is synthesized via simple preparation using the hydrothermal co-deposition method. The results of morphology and structure imply that the g-C₃N₄ has deposited on the surface of fusiform CaTiO₃ successfully, and the photocatalytic activity of the g-C₃N₄/CaTiO₃ nano-heterojunctions exhibits a remarkably enhancement of 18 times than that of the unmodified sample. Further, proved by the transient photocurrent, PL, EIS and Motty-Scotty plots, the photocatalytic hydrogen production enhancement could be ascribed to the nano-heterojunction at the interface.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Currently, the energy shortage and the environmental pollution are recognized as the global issues for restricting the further development of industry, thus, the exploration of new energy would be a burning issue. Compared with the wind energy, hydraulic energy or nuclear energy, the solar energy, with enormous reserves and renewability, would be regarded as the most potential choice [1-4]. Up to now, series of inspiring achievements have been reported by different methods, such as solar cells, photothermal technique or photochemical technique [5-9], etc. Especially the photocatalytic hydrogen production [10,11], with the high energy density and green combustion product of the hydrogen [12,13], has become a focused research at present.

So far, series of materials have been reported to achieve the photocatalytic hydrogen production performance, such as ZnO, SnO₂, MoS₂, WO₃ or Fe₂O₃, etc [14–19]. Among these materials, the perovskites (ABO₃) structures [20], with the appropriate conduction band to redox potential of H^+/H_2 , have been reported as the promising materials. In particular the CaTiO₃, with the easy preparation and physical-chemical stability [21], has attracted lots of attentions. However, restricted by the wider band gap and higher photon-generated carriers recombination, the hydrogen production

* Corresponding author.

E-mail address: crli@zstu.edu.cn (C. Li).

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Pan J, et al., The enhanced photocatalytic hydrogen production of the fusiform $g-C_3N_4$ modification CaTiO₃ nano-heterojunction, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.08.102

https://doi.org/10.1016/j.ijhydene.2018.08.102

performance would be expected to improve further, and lots of attempts have been tried, such as Lozano-Sanchez's group, who have reported the Er³⁺ doped CaTiO₃ with long-lived photoinduced charge-carriers for enhancing photocatalytic H₂ production [22], Liu's group, who have prepared the Zscheme three-dimensionally ordered macroporous SrTiO₃/ Ag/Ag₃PO₄ photocatalysts with remarkable contaminant degradation [23], Do's group, who have fabricated the Ptloaded g-C₃N₄ nanolayers with enhanced hydrogen production [24], etc. It's obvious that, most of the researches focus on increasing the photon-generated carriers efficiency, light utilization or surface reaction sites [25,26]. Integrated above factors, including the preparation cost and efficiency, the surface heterojunction modification would be perceived as a desired method involves above advantages, such as Cui et al., who have synthesized the Cu₂O/BiVO₄ heterojunction catalysts with remarkable visible light photocatalytic activity [27], Liu groups, who have prepared the WO₃/Sb₂S₃ heterojunction photocatalyst for enhancing the efficiency in water splitting [28], Shi et al., who have reported the In₂S₃/CdIn₂S₄/In₂O₃ ternary heterostructure for enhancing the photocatalytic hydrogen production [29], Salavati-Niasari groups, who have fabricated the Cu₂CdI₄/CuI heterojunction for improving the photocatalytic performance [30], Liu et al., who have fabricated the Z-scheme SnS₂/Bi₂MoO₆ heterojunction photocatalysts with excellent photocatalytic activity [31], and so on [32,33]. However, in view of the electric potential of the H₂O, the process of photocatalytic hydrogen production demands that the conduction band should be negative (vs NHE, Normal Hydrogen Electrode) [34-36]. As known, for such heterojunction, the photon-generated electrons would transfer to the lower conduction band, which means that the performance of photocatalytic hydrogen production depends on the lower conduction band [37,38] and restricts the optional material for this modification immensely. Therefore, the suitable materials are significant for improving the photocatalytic hydrogen production.

There, the graphitic carbon nitride $(g-C_3N_4)$ [39], with remarkable visible light response (2.7 eV), unique electronic band structure and low cost, has been reported as an promising visible light photocatalyst for the photocatalytic hydrogen production [40], such as Liu's group, who have obtained the Au/C₃N₄ with plasmonic hot-electron injection for enhanced photocatalytic hydrogen evolution [41], Li's group, who have reported the 2D MoS₂/O-g-C₃N₄ heterostructure with enhanced photocatalytic hydrogen evolution [42], Shi's group, who have prepared the g-C₃N₄/InVO₄ nanocomposites and enhanced the photocatalytic hydrogen production activity [43], etc [44]. As revealed, in vast researches, the $g-C_3N_4$ is always considered as the main photocatalyst. There, it's interesting that the g-C₃N₄ with nanostructure could also act as the modification materials, which could provide sufficient specific surface areas and increase the separation of the photon-generated carriers for improving the photocatalytic hydrogen production [45].

In addition, the morphology is deemed as another important factor for the nano-photocatalyst [46], and lots of inspiring achievements have been reported, such as Xu et al., who have reported the hollow CaTiO₃ cubes for efficient photocatalytic hydrogen production [47], Ghanbari et al., who have prepared different morphologies of $RbPbI_3$ nanaostructures to investigate the photocatalytic performance [48], Hu et al., who have prepared the $SrTiO_3$ nanofiber with enhanced photocatalytic activity via electrospun [49], etc. There, the $CaTiO_3$, with the fusiform nanostructure, could provide large reaction sites for the deposition of the g- C_3N_4 nanosheets and photocatalysis, which is also considered as another advantage for this heterojunction.

In this work, we prepared the fusiform g- C_3N_4 modification CaTiO₃ nano-heterojunction via simple hydrothermal codeposition method. Compared with the unmodified samples, the as-prepared g- C_3N_4 /CaTiO₃ nano-heterojunction possesses an obvious enhancement of photocatalytic hydrogen production performance. Further, the recycle stability and mechanism of the heterojunction were studied.

Experiment

The details of the experiments are shown in ESI. The samples modified by $g-C_3N_4$ with the different molar ratios ($g-C_3N_4$ / CaTiO₃) of 1/13.5, 2/13.5, and 3/13.5 were labeled as Ca-C-1, Ca-C-2 and Ca-C-3, respectively.

Result and discussion

The crystal structures and the phase components of the asprepared g-C₃N₄/CaTiO₃ are characterized by XRD. As illustrated in Fig. 1, the obvious diffraction peaks at the curve of pure CaTiO₃ could be ascribed to the (101), (110), (111), (200), (021), (120), (210) (103), (202), (004), (024), (312) and (224) planes of the CaTiO₃ (PDF#78-1013). With the g-C₃N₄ being introduced, the new diffraction peak appears at 27.7°, increases with the ratio of the modification obviously, could be ascribed to the layer stacking of conjugated aromatic rings on g-C₃N₄(PDF#87-1526) [50]. It's interesting that the diffraction peaks of the CaTiO₃ in composites are similar to the intrinsic CaTiO₃, which indicates the hydrothermal process would not

Fig. 1 – The XRD spectra of the fusiform $CaTiO_3$ modified with different ratio of g- C_3N_4 .

Please cite this article in press as: Pan J, et al., The enhanced photocatalytic hydrogen production of the fusiform $g-C_3N_4$ modification CaTiO₃ nano-heterojunction, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.08.102

Download English Version:

https://daneshyari.com/en/article/11011642

Download Persian Version:

https://daneshyari.com/article/11011642

Daneshyari.com