ARTICLE IN PRESS

international journal of hydrogen energy XXX (2018) $1\!-\!\!18$

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Two-stage PSA/VSA to produce H₂ with CO₂ capture via steam methane reforming (SMR)

Wenrong Shi^a, Huawei Yang^b, Yuanhui Shen^a, Qiang Fu^a, Donghui Zhang^{a,*}, Bo Fu^c

^a State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Research Center of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

^b School of Chemistry and Materials Science, Ludong University, Yantai 264025, China

^c College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

ARTICLE INFO

Article history: Received 20 April 2018 Received in revised form 7 August 2018 Accepted 9 August 2018 Available online xxx

Keywords: PSA/VSA H₂ production CO₂ capture Steam methane reforming

ABSTRACT

A two-stage pressure/vacuum swing adsorption (PSA/VSA) process was proposed to produce high purity H_2 from steam methane reforming (SMR) gas and capture CO_2 from the tail gas of the SMR-H₂-PSA unit. Notably, a ten-bed PSA process with activated carbon and 5A zeolite was designed to produce 99.99+% H_2 with over 85% recovery from the SMR gas (CH₄/CO/CO₂/H₂ = 3.5/0.5/20/76 vol%). Moreover, a three-bed VSA system was constructed to recover CO₂ from the tail gas using silica gel as the adsorbent. CO₂ product with 95% purity and over 90% recovery could be attained. Additionally, the effects of various operating parameters on the process performances were investigated in detail.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Pressure swing adsorption (PSA) is a highly versatile separation and purification technology employed in the industry [1,2]. Recently, extensive researches and developments of various PSA processes, particularly in relation to H_2 purification, have been reported [3–6].

 H_2 , considered as one of the most promising ecologically clean and sustainable energy sources, is predicted to be a key contributor towards the reduction of the greenhouse effect, climatic changes, and energy crisis [7–9]. Currently, H_2 is mainly produced from fossil fuels, notably natural gas, with steam methane reforming (SMR) being the dominant industrial process for H₂ production [10,11]. The process is generally followed by a water gas shift (WGS) conversion stage and final H₂ purification by PSA [12]. The typical gas mixture composition drawn from SMR to the PSA unit comprises 75–80% H₂, 15–25% CO₂, 1–5% CH₄, 0.1–1% CO, and trace N₂ at a pressure over 22 bar [13,14]. To attain a good performance, an industrial PSA process typically comprises 4–12 parallel beds with hybrid adsorbents such as activated carbon (AC) and zeolite to remove contaminants [15]. However, the achievement of both a high recovery and purity (98%–99.999%) of H₂ is challenging. Thus, the effects of different parameters on the process performances have been reported in the literature.

* Corresponding author.

E-mail address: donghuizhang@tju.edu.cn (D. Zhang).

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Shi W, et al., Two-stage PSA/VSA to produce H₂ with CO₂ capture via steam methane reforming (SMR), International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.08.077

https://doi.org/10.1016/j.ijhydene.2018.08.077

ARTICLE IN PRESS

international journal of hydrogen energy XXX (2018) $1\!-\!18$

Nomenclature		q_i^*	adsorbed phase concentration in equilibrium with bulk component i $(mol \cdot kg^{-1})$
English Symbols		$q_{m,i}$	specific saturation adsorption capacity of
c _i	gas phase concentration of component i	- /	component i (mol·kg ⁻¹)
	(mol•m ⁻³)	Tw	bed wall temperature (K)
C _{pa,i}	specific heat capacity of adsorbed phase of	r _p	adsorbent particle radius (m)
	component i (J·mol ⁻¹ ·K ⁻¹)	\hat{R}_q	ideal gas constant (J·mol ⁻¹ ·K ⁻¹)
C_{ps}	specific heat capacity of adsorbent (J \cdot kg ⁻¹ \cdot K ⁻¹)	t	time (s)
C _{pw}	specific heat capacity of bed wall (J $kg^{-1}K^{-1}$)	Т	temperature (K)
C _{vg}	specific gas phase heat capacity at constant	To	inner temperature of the bed wall (K)
	volume (J·mol ⁻¹ ·K ⁻¹)	T_{amb}	ambient temperature (K)
D _{ax,i}	axial dispersion coefficient of component i	T_g	gas phase temperature (K)
	$(m^2 \cdot s^{-1})$	T_s	solid temperature (K)
D_b	bed diameter (m)	v_g	gas phase superficial velocity (m \cdot s $^{-1}$)
D _{e,i}	effective diffusion coefficient of component i	V	standard volume flow rate (m ³ ·h ⁻¹)
	$(m^2 \cdot s^{-1})$	Wt	thickness of bed wall (m)
D _{k,i}	knudsen diffusion coefficient of component i	Ζ	axial direction (m)
	$(m^2 \cdot s^{-1})$	Greek sy	umbols
$D_{m,i}$	molecular diffusion coefficient of component i	αn	specific particle surface area per unit volume of
	$(m^2 \cdot s^{-1})$	тp	bed (m^2/m^3)
F	molar flow rate (SLPM)	$\rho_{\rm h}$	bulk density of adsorption bed (kg \cdot m ⁻³)
$h_{ m amb}$	wall-ambient heat transfer coefficient		, , , , , , , , , , , , , , , , , , , ,
-		p_{α}	gas phase molar density (mol·m ^{−3})
-	$(W \cdot m^{-2} \cdot K^{-1})$	ρ_g ρ_n	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³)
n _f	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$	$ ho_g$ $ ho_p$ $ ho_w$	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³) density of bed wall (kg·m ⁻³)
n _f h _w	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$	ρ _g ρ _p ρ _w ⊿H _i	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³) density of bed wall (kg·m ⁻³) isostatic heat of adsorption of component i
n _f h _w H _b	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m)	$ ho_g ho_p ho_w ho_H ho_H ho_i$	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³) density of bed wall (kg·m ⁻³) isostatic heat of adsorption of component i (kJ·mol ⁻¹)
n _f h _w H _b IP _{1-4i}	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i	$ ho_g ho_p ho_w ho_H ho_H ho_i$	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³) density of bed wall (kg·m ⁻³) isostatic heat of adsorption of component i (kJ·mol ⁻¹) bulk gas phase mixture viscosity (kg·m ⁻¹ ·s ⁻¹)
h_f h_w H_b IP_{1-4i} k_g	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$	$egin{aligned} & \rho_g & & & & & & & & & & & & & & & & & & &$	gas phase molar density (mol·m ⁻³) adsorbent particle density (kg·m ⁻³) density of bed wall (kg·m ⁻³) isostatic heat of adsorption of component i (kJ·mol ⁻¹) bulk gas phase mixture viscosity (kg·m ⁻¹ ·s ⁻¹) shape factor of adsorbent particle (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} h	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component i	$\begin{array}{c} \rho_{g} \\ \rho_{p} \\ \rho_{w} \\ \Delta H_{i} \end{array}$ $\mu \\ \Psi \\ \gamma \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} k_s h	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component <i>i</i> gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component <i>i</i> solid thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ thermal conductivity of head well $(W m^{-1} \cdot K^{-1})$	$\begin{array}{c} \rho_g \\ \rho_p \\ \rho_w \\ \Delta H_i \end{array}$ $\mu \\ \Psi \\ \gamma \\ \eta \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless) compressor efficiency (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} k_s k_w M	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component i solid thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ thermal conductivity of bed wall $(W \cdot m^{-1} \cdot K^{-1})$	$\begin{array}{c} \rho_g \\ \rho_p \\ \rho_w \\ \Delta H_i \end{array}$ $\begin{array}{c} \mu \\ \Psi \\ \gamma \\ \eta \\ \varepsilon_b \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless) compressor efficiency (dimensionless) bed porosity (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} k_s k_w M P	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component i solid thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ thermal conductivity of bed wall $(W \cdot m^{-1} \cdot K^{-1})$ molar weight (kg·mol ⁻¹) pressure (Pa)	$\begin{array}{c} \rho_g \\ \rho_p \\ \rho_w \\ \Delta H_i \end{array}$ $\begin{array}{c} \mu \\ \Psi \\ \gamma \\ \eta \\ \varepsilon_b \\ \varepsilon_p \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless) compressor efficiency (dimensionless) bed porosity (dimensionless) particle porosity (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} k_s k_w M P a_i	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component i solid thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ thermal conductivity of bed wall $(W \cdot m^{-1} \cdot K^{-1})$ molar weight (kg·mol ⁻¹) pressure (Pa) adsorbed phase concentration of component i	$\begin{array}{c} \rho_g \\ \rho_p \\ \rho_w \\ \Delta H_i \end{array}$ $\begin{array}{c} \mu \\ \psi \\ \gamma \\ \eta \\ \varepsilon_b \\ \varepsilon_p \\ \tau \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless) compressor efficiency (dimensionless) bed porosity (dimensionless) particle porosity (dimensionless) pore tortuosity (dimensionless)
h_f h_w H_b IP_{1-4i} k_g k_{LDFi} k_s k_w M P q_i	$(W \cdot m^{-2} \cdot K^{-1})$ gas-solid heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ gas-wall heat transfer coefficient $(W \cdot m^{-2} \cdot K^{-1})$ height of adsorbent layer (m) isotherm parameters of 1–4 for component i gas phase thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ mass transfer coefficient for component i solid thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$ thermal conductivity of bed wall $(W \cdot m^{-1} \cdot K^{-1})$ molar weight (kg·mol ⁻¹) pressure (Pa) adsorbed phase concentration of component i	$\begin{array}{c} \rho_g \\ \rho_p \\ \rho_w \\ \Delta H_i \end{array}$ $\begin{array}{c} \mu \\ \Psi \\ \gamma \\ \eta \\ \varepsilon_b \\ \varepsilon_p \\ \tau \end{array}$	gas phase molar density $(mol \cdot m^{-3})$ adsorbent particle density $(kg \cdot m^{-3})$ density of bed wall $(kg \cdot m^{-3})$ isostatic heat of adsorption of component i $(kJ \cdot mol^{-1})$ bulk gas phase mixture viscosity $(kg \cdot m^{-1} \cdot s^{-1})$ shape factor of adsorbent particle (dimensionless) ratio of specific heats (C_p/C_v) (dimensionless) compressor efficiency (dimensionless) bed porosity (dimensionless) particle porosity (dimensionless) pore tortuosity (dimensionless)

Sircar et al. [16,17] reviewed recent ideas that further improve H_2 recovery from H_2 -PSA processes. They reported that H_2 recovery could be significantly improved by using an additional unit from the SMR-off gas (SMROG). Several PSA simulations for H_2 purification, with different cycles under various operation conditions, were performed by Lopes et al. [18]. The results revealed that H_2 recovery could be significantly improved with an increase in the pressure equalization steps; this was also verified by Milad [19].

As a corollary, two aspects can be considered to improve H_2 recovery: 1) the current H_2 -PSA process can be upgraded or a new H_2 -PSA process can be designed to reduce the release loss of H_2 . 2) Another unit can be constructed to recover the H_2 lost in the tail gas. Accordingly, a typical H_2 -PSA tail gas comprises 50–55 vol% CO₂, 24–26 vol% H_2 , 15–20 vol% CH₄, 0–2 vol% CO, and 0–5 vol% H_2 O, depending on the operating parameters [20]. In addition, the unit used to recover H_2 should simultaneously capture CO₂ from the tail gas.

In conclusion, a two-stage PSA/VSA process can add significant value to the separation process by recycling CO_2 as a

product. Thus, the fuel value of the waste gas increases, which has a high Btu value with only 8-10% CO₂. Subsequently, the remaining gases can be reintroduced into the SMR unit as a fuel gas.

The main objective of this paper is to upgrade the performance of the H_2 -PSA process:

- A ten-bed PSA process with four pressure equalizations was designed to produce high purity H₂ from the SMR stream.
- (2) The adsorption equilibria of pure CH₄, CO, CO₂, and H₂ were measured on AC, 5A zeolite, and silica gel.
- (3) The effects of different operating parameters, including the feed flow rate, the purge-to-feed ratio and carbonto-zeolite ratio, on the system performance were assessed.
- (4) The use of a three-bed VSA process with silica gel as the adsorbent to recover H₂ and simultaneously capture CO₂ from the tail gas was investigated by simulations.

Download English Version:

https://daneshyari.com/en/article/11011648

Download Persian Version:

https://daneshyari.com/article/11011648

Daneshyari.com