
Contents lists available at ScienceDirect

Tourism Management

journal homepage: www.elsevier.com/locate/tourman

Diagnosing and correcting the effects of multicollinearity: Bayesian
implications of ridge regression

A. George Assafa,∗,1, Mike Tsionasb, Anastasios Tasiopoulosc

a Isenberg School of Management, University of Massachusetts-Amherst, 90 Campus Center Way, 209A Flint Lab, Amherst, MA, 01003, USA
b Lancaster University Management School, UK
cHellenic Parliamentary Budget Office (HPBO), Greece

A R T I C L E I N F O

Keywords:
Multicollinearity
Bayesian analysis
Ridge regression
Gibbs sampling

A B S T R A C T

When faced with the problem of multicollinearity most tourism researchers recommend mean-centering the
variables. This procedure however does not work. It is actually one of the biggest misconceptions we have in the
field. We propose instead using Bayesian ridge regression and treat the biasing constant as a parameter about
which inferences are to be made. It is well known that many estimates of the biasing constant have been pro-
posed in the literature. When the coefficients in ridge regression have a conjugate prior distribution, formal
selection can be based on the marginal likelihood. In the non-conjugate case, we propose a conditionally con-
jugate prior for the biasing constant, and show that Gibbs sampling can be employed to make inferences about
ridge regression parameters as well as the biasing constant itself. We examine posterior sensitivity and apply the
techniques to a tourism data set.

1. Introduction

The problem of multicollinearity is highly common in tourism re-
search. One particular example is the regression model with mod-
erators. Such model is usually highly prone to having collinearity
problems because the interaction term is created by multiplying two
exogenous variables to create another exogenous variable. To “alle-
viate” the potential problems of collinearity, tourism researchers rou-
tinely mean center the variables by subtracting the item value from the
mean value of the item. This simply does not fix the problem. Mean
centering does not really help or harm (Echambadi & Hess, 2007; and
Dalal & Zickar, 2012). While the mean-centered coefficients have dif-
ferent interpretations than the original coefficients, we rarely see them
being compared against each other in the tourism literature.

Assuming that data for the dependent variable are arranged in the
×n 1 vector y and the data for the explanatory variables are in the
×n p matrix X, so that we have n observations and p regressors, it is

well established that the least squares (LS) estimator = ′ ′−b X X X y( ) 1 ,
under the stated assumptions about the error term is the best linear
unbiased estimator (BLUE). However, multicollinearity can result in ill
conditioning of the matrix ′X X rendering the LS estimator undesirable.
For example, when this matrix is nearly non-invertible, the covariance
matrix will have large elements in the diagonal, implying that standard

errors of LS estimators will be quite large. Effectively, in specific sam-
ples, it is quite likely that we may end up with LS coefficients having the
wrong sign, being non-significant, etc.

A regularization method that has been proposed is the use of the
ridge regression estimator (Hoerl & Kennard, 1970), with a biasing
constant k, usually small. Effectively, “ the procedure can be used to
portray the sensitivity of the estimates to the particular set of data being
used, and it can be used to obtain a point estimate with a smaller mean
square error” (Hoerl & Kennard, 1970, p. 55). As a matter of fact, Hoerl
and Kennard (1970) discussed the Bayesian foundation of their ap-
proach (p.64) and also proposed a more general ridge regression.

A main challenge in the literature has been finding the appropriate
value of k, as different procedures (Dorugade & Kashid, 2010; Uslu,
Egrioglu, & Bas, 2014) have been used for that purpose. Hoerl and
Kennard (1970) suggested using the ridge trace to find the appropriate
value of k, for which the regression coefficients have been stabilized.
Hoerl and Kennard (1976) proposed an iterative approach for selecting
k. However, their procedure does not necessarily converge. As there is
no consensus on what is a reasonable procedure to select the value of k,
we propose here a Bayesian approach to address this issue. Our aim is to
provide tourism researchers with more flexibility in estimating ridge
regressions. The Bayesian approach is appealing because it treats k as a
parameter which is to be selected in light of the data. In fact, we do not
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select a single value of k, but we produce the whole marginal posterior
of this parameter given the data. This, in turn, is one attractive way to
address the uncertainty about k.

The push for Bayesian estimation is taking place across several
disciplines such as management (Cabantous & Gond, 2015; McKee &
Miller, 2015; Zyphur & Oswald, 2015), marketing (Rossi & Allenby,
2003; Rossi, Allenby, & McCulloch, 2012), psychology (Van De Schoot,
Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017) and tourism
(Assaf and Tsionas, 2018a,b). Over the last decade, we have seen a
strong increase in the use of the Bayesian methodology in tourism and
other related fields (Assaf, 2012; Assaf et al. 2017, 2018a; Barros, 2014;
Wang, Zeng, & Tang, 2011; Wong, Song, & Chon, 2006). A recent
special issue in the Journal of Management is a clear indication on the
growing popularity of this method (Zyphur & Oswald, 2015). Across
several research areas in tourism, recent studies have demonstrated the
effectiveness of the Bayesian approach. For instance, Wong et al. (2006)
showed that a Bayesian vector autoregressive model resulted in better
forecasting accuracy than traditional non-Bayesian models. Assaf, Li,
Song, and Tsionas (2018b) showed that the Bayesian global vector
autoregressive (BGVAR) consistently outperforms other non-Bayesian
models. Moreover, in related areas, such as tourism performance, re-
cent studies have demonstrated how the Bayesian approach can handle
more complicated models than traditional estimation techniques (Assaf
and Tsionas, 2018a,b).

Recent papers have provided comprehensive introductions on the
advantages of the Bayesian approach (Muthén, 2010; Zyphur & Oswald,
2015). The Bayesian approach offers several advantages in the esti-
mation of regression models including “ rich diagnostic information
about parameters and models; controlling for multiple comparisons as a
function of the data; handling low-frequency, unbalanced, missing data;
and exploration of prior assumptions about model parameters” (Zyphur
& Oswald, 2013, p. 7). Probably, one of the most known advantages of
the method is its ability to incorporate prior information about a
parameter and form a prior distribution. The Bayes’ theorem can be
expressed as: ∝p θ y p y θ p θ( | ) ( | ) ( ), where ∝ is the proportionality
symbol. Here, p θ y( | ) is the posterior distribution which is used to carry
out all inferences, and is proportional to the product of the prior
p θ( )and the likelihood functionp y θ( | ).2 Different choices of priors can
be used such as conjugate vs. non-conjugate priors. The prior is said to
be conjugate if it belongs to the family of distribution as the posterior
distribution. For example, in the context when the likelihood function is
binomial ∼y Bin n θ( , ) , a conjugate prior in the form of a beta dis-
tribution on θ will also lead to a posterior distribution that follows a
beta distribution. A prior distribution which is not conjugate is called a
non-conjugate prior.

We illustrate below the flexibility of the Bayesian approach and
prior information within the context of ridge regression. In particular,
we introduce a Bayesian ridge estimator for both conjugate and non-
conjugate priors. We rely more on the non-conjugate prior as conjugate
priors are restrictive and have certain problems, for example they have
the same tails with the likelihood and they are rarely used in practice. A
singular advantage of the Bayesian approach is that ridge regression
can be interpreted as Bayes posterior mean when the prior on the re-
gression parameters is multivariate normal with zero mean and diag-
onal covariance matrix whose diagonal elements have the same var-
iance/precision. Moreover, the significance of the Bayesian approach to
regression is that the celebrated James-Stein estimator has a direct
empirical Bayes estimator. The James-Stein estimator is well-known to
improve on maximum likelihood/OLS estimator in terms of risk and
MSE across all values of the parameter space.

In this paper, we proceed as follows: In section 2 we provide an
introduction to ridge regression. Sections 3 and 4 present the Bayesian
ridge regression approach with conjugate and non-conjugate setting in

comparison with the diffuse prior assumptions. We conduct a Monte
Carlo study in section 5. We then present an illustration of the Bayesian
ridge regression using a tourism application.

2. How to proceed?

So, if mean centering does not work, how to proceed from here? One
of the most common approaches is to use ridge regression to analyze
regression data that is subject to multicollinearity. As mentioned, with
OLS, the regression parameters can be estimated using the following
formula:

= ′ ′−b X X X y( ) 1

The ridge regression differentiates by adding a biasing constant
>k 0 to the diagonal elements of the correlation matrix:

= ′ + ′−kb X X I X y( ) ,k p
1

This is where the term “ridge regression” comes from as the diag-
onal of one in the correlation matrix are thought of as a ridge. What we
know from Hoerl and Kennard (1970) is that there is always a

∈k k(0, ¯) for which ridge regression dominates OLS in terms of mean

squared error (MSE), and =k̄ σ
α

2
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2 , where ′ = ′X X P ΛP, and =α Pβ.

Here, P is the orthonormal matrix of eigenvectors of ′X X, and
=Λ diag λ λ( , .., . )p1 , where λ λ, .., p1 represent the distinct eigenvalues of

′X X. Another result of Hoerl and Kennard (1970) was that the total MSE
of the ridge estimator is3:

∑=
+

+ ′ ′ +
=

−MSE σ λ
λ k

k kb β X X I β( )
( )

( )k
i

p
i

i
p

2

1
2

2 2

Minimizing the MSE, unfortunately, depends on the ratio of β σ/ .
Depending on this result several settings for the parameter k have been
proposed. See for example Khalaf and Shukur (2005), Lawless and
Wang (1976), Nomura (1988) and Maruyama and Strawderman (2005).
A similar idea is the Bayesian lasso regression (Hans, 2009; Park &
Casella, 2008).

The goal of this paper is to propose a more flexible way to estimate k
using the Bayesian approach. As mentioned, one of the advantages is
that with the Bayesian approach we do not (necessarily) select a single
value of k but we produce the whole marginal posterior of this para-
meter given the data. We aim here to diagnose and correct the effects of
multicollineatity through a full non-conjugate Bayesian approach to
ridge regression. In particular, we take up Bayesian inference in con-
jugate and non-conjugate ridge regression models by using the fact that
a prior can be placed on the ridge parameter(s) k and proceed with
posterior analysis on all parameters using MCMC techniques. We run
different simulations to illustrate the performance of the method. We
also provide evidence based on a dataset from the hotel industry.

Specifically, given the general regression model, we consider first
ridge regression from the Bayesian point of view of treating the biasing
constant k( ) as a parameter about which inferences are to be made to
avoid selecting a particular value of k. For the conjugate case we have
derived the marginal likelihoods and showed how selection of the k
parameter can be performed to choose the appropriate value. It is im-
portant to notice that the original ridge regression estimators depend
crucially on a conjugacy assumption, namely that the regression coef-

ficients, ∼ ( )σ k Nβ I| , 0,p
σ
k p
2

. Conjugate priors have certain problems,

for example they have the same tails with the likelihood and they are
rarely used in practice.

The reader can refer to Leamer (1978) and Judge, Griffith, Hill, Lee,
and Lutkepohl (1985) regarding this point. As they mention, despite the
fact that the natural conjugate setting is a convenient approach (since it
provides an analytical solution to the integrations involved), it has been

2 The likelihood function summarizes the information from the data. 3 The notation for a matrix A, means =− − −A A A2 1 1.
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