Accepted Manuscript

Investigation into Role of CO2 in Two-Stage Pyrolysis of Spent Coffee Grounds

Youkwan Kim, Jechan Lee, Haakrho Yi, Yiu Fai Tsang, Eilhann E. Kwon

PII:	\$0960-8524(18)31423-8
DOI:	https://doi.org/10.1016/j.biortech.2018.10.009
Reference:	BITE 20573
To appear in:	Bioresource Technology
Received Date:	27 September 2018
Revised Date:	2 October 2018
Accepted Date:	3 October 2018

Please cite this article as: Kim, Y., Lee, J., Yi, H., Fai Tsang, Y., Kwon, E.E., Investigation into Role of CO₂ in Two-Stage Pyrolysis of Spent Coffee Grounds, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation into Role of CO₂ in Two-Stage Pyrolysis of

Spent Coffee Grounds

Youkwan Kim^{1,a}, Jechan Lee^{2,a}, Haakrho Yi³, Yiu Fai Tsang⁴, and Eilhann E. Kwon^{1,*}

¹Department of Environment and Energy, Sejong University, Seoul, 05005, South Korea ²Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499,

South Korea

³Gwangyang Research Group, Research Institute of Industrial Science and Technology,

Gwangyang, 37673, South Korea

⁴Department of Science and Environmental Studies, Education University of Hong Kong, Tai Po, New Territories, Hong Kong

Abstract

As a way of improving process efficiency of pyrolysis of waste biomass, the effect of carbon dioxide (CO_2) on pyrolysis of spent coffee grounds (SCGs) was examined using a two-stage pyrolysis reactor consisting of a region with increasing temperature and an isothermal region. It was experimentally validated that CO_2 accelerates thermal cracking of organic compounds formed during the pyrolysis of SCGs. The expedited thermal cracking attributed to employing CO_2 in pyrolysis of SCGs led to changing pyrolytic products in gas,

^aThese authors are co-first authors because they contributed equally to this work.

^{*}Corresponding author: Prof. Eilhann E. Kwon (E-mail: ekwon74@sejong.ac.kr)

Download English Version:

https://daneshyari.com/en/article/11012250

Download Persian Version:

https://daneshyari.com/article/11012250

Daneshyari.com