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a b s t r a c t

Block Krylov subspace methods are the most popular algorithms for solving large non-
symmetric linear systems with multiple right-hand sides. One of them is the block CMRH
method. This method generates a (non orthogonal) basis of the Krylov subspace through
the block Hessenberg process. To accelerate the convergence of the block CMRH method,
we will introduce two new methods. First, we present the block CMRH method with
weighting strategy. In thismethod, the block CMRHmethoduses a different product at each
restart. Second, we introduce a flexible version of the block CMRH algorithm that allows
varying preconditioning at every step of the algorithm. Numerical experiments illustrate
the benefits of the presented methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Block iterative methods are used for large systems with multiple right-hand sides of the form

AX = B, (1)

where A ∈ Rn×n is a large nonsymmetric real matrix and X and B are rectangular matrices of dimension n × s, and s is of
moderate size (i.e., s ≪ n). This problem arises in many areas of science and engineering, such as computational biology,
electromagnetic structure computation, control theory, and so on [1–4].

WhenA is a large sparsematrix, block iterativemethods, e.g., block CGmethod [5], blockGMRESmethod [6], block Lanczos
method [7], block QMR method [1], block BiCGSTAB method [8], block LSQR method [9], the block OSGCR(s)/OSOmin(s,k)
methods [10,11], or block CMRHmethod [12,13] are natural candidates for solving (1). The purpose of these block methods
is to provide the solutions of a multiple right-hand sides system faster than their single right-hand side counterparts. They
are generally more efficient when the matrix of the linear system is relatively dense or when preconditioners are used.

The global methods form another family that can be applied to the solution of multiple linear systems. These methods
are based on the use of a global projection process onto a matrix Krylov subspace and they are particularly suitable for
sparse multiple linear systems. References on this class include global FOM and GMRES methods [14,15], global BCG and
BiCGSTABmethods [16,17], global CGS algorithm [18,19], Gl-LSQR algorithm [20], Gl-BCR and Gl-CRS algorithms [21], global
Hessenberg and CMRH methods [22], and global SCD algorithm [23]. In order to improve the convergence property of the
Krylov subspace methods the weighted and flexible versions of these methods have been proposed. The weighting strategy
has been successfully developed for solving linear systems [24] and matrix equations [24–28]. Several flexible versions of
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Krylov SubspaceMethods have been implemented successfully. These include the flexibleGMRESmethod [29], GMRESR [30],
flexible CG [31–33], flexible QMR [34], flexible BiCG and flexible BiCGSTAB [35]. See also [36] for a general theory where the
preconditioner itself is a Krylov subspace method.

For nonsymmetric problems, the block CMRH [12,13] is one such method, but it may need restarting. Here we give two
new versions of the restarted block CMRHmethod to improve convergence. First to accelerate the convergence of the block
CMRHmethod we apply a weighting technique. We introduce a weighted block Hessenberg process for constructing a basis
of the block Krylov subspace by using the weighting matrix D. Second we propose a flexible version of the block CMRH.

Throughout the paper, all vectors and matrices are assumed to be real. For a matrix X , ∥X∥F denotes the Frobenius norm
∥X∥F =

√
tr(XTX). For a matrix V ∈ Rn×s, the block Krylov subspace Kk(A, V ) is the subspace generated by the columns

of the matrices V , AV , A2V , . . . , Ak−1V . Some MATLAB notation is used; for instance, Hk(i + 1 : m + 1, 1 : m) denotes the
portion ofHk with rows from i+1 tom+1 and columns from 1 tom. Finally, 0m×n and Is will denote the zero and the identity
matrices in Rm×n and Rs×s, respectively.

As in [37], we need the definition of the left inverse of a rectangular matrix. Let Zk be the n × k matrix. We partition this
matrix as follows:

Zk =

[
Z1k
Z2k

]
,

where Z1k is a k × k square matrix. If the matrix Z1k is nonsingular, we define Z L
k a left inverse of Zk by

Z L
k =

[
Z1−1

k , 0k×(n−k)
]
.

The structure of the paper is as follows. In Section 2,we briefly describe the block CMRHmethod for solving nonsymmetric
linear systems with multiple right-hand sides. A weighted version of the block CMRH algorithm is presented in Section 3.
In Section 4, we propose the fixed and flexible preconditioned block CMRH algorithm. In Section 5, we demonstrate the
effectiveness of the proposed methods. Finally, conclusions are summarized in Section 6.

2. Block CMRHmethod

The block CMRH method [12,13] is a generalization of the well-known CMRH method [37]. The essential component of
the block CMRHmethod is the block Hessenberg process. Let X0 ∈ Rn×s be an initial matrix for the solution of system (1) and
R0 = B − AX0 its residual. The block Hessenberg process computes a unit trapezoidal matrix Lm = [L1, L2, . . . , Lm], whose
matrices Li ∈ Rn×s, for i = 1, 2, . . . ,m, form a basis of the Krylov subspaceKm(A, R0) = span{R0, AR0, . . . , Am−1R0}, by using
the following formulas:⎧⎪⎨⎪⎩

R0 = L1U1,

Lk+1Hk+1,k = ALk −

k∑
j=1

LjHj,k, for k = 1, . . . ,m,
(2)

where the unit trapezoidal matrix Lk+1 and the upper triangular matrixHk+1,k ∈ Rs×s are determined by the LU factorization
of W = ALk −

∑k
j=1LjHj,k, and the matrices Hj,k ∈ Rs×s are determined such that

Lk+1 ⊥ E1, E2, . . . , Ek, (3)

where Ei, for i = 1, 2, . . . , k, is the n × s matrix which is zero except for the ith s rows, which are the s × s identity matrix.
Let Hm ≡ (Hi,j)1≤i≤m+1,1≤j≤m be an (m + 1)s × ms block upper Hessenberg matrix. From the block Hessenberg process, we
can deduce the relation

ALm = Lm+1Hm = LmHm + Lm+1Hm+1,mET
m, (4)

where Hm is the ms×ms matrix obtained from Hm by deleting the last s rows and Em is the ms×s matrix which is zero
except for themth s rows, which are the s × s identity matrix.

The block Hessenberg process can breakdown if the LU factorization of R0 or W does not exist [13]. For avoiding such a
breakdown, we use pivoting strategy.

The block CMRH method constructs an approximate solution of the form XBC
m = X0 + LmY BC

m , where Y BC
m is the solution

of the minimizing problem

min
Y∈Rms×s

∥E1U1 − HmY∥F , (5)

where E1 ∈ R(m+1)s×s is the first s columns of the identity matrix.
In Algorithm 1, we summarize the restarted block CMRH method with pivoting strategy (denoted by BCMRH(m)). More

detail can be found in [13]. We mention that the block CMRH algorithm given in [12] is similar to the Algorithm 1. The main
difference between these algorithms is the generation of the matrices Hm and W in the block Hessenberg processes.

We end this section by giving a relation between the residual norms of the block CMRH method and the block GMRES
method denoted by ∥RBC

m ∥F and ∥RBG
m ∥F , respectively, which is stated in the following lemma [13].
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