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a b s t r a c t 

The goal of affine matrix rank minimization problem is to reconstruct a low-rank or approximately low- 

rank matrix under linear constraints. In general, this problem is combinatorial and NP-hard. In this paper, 

a nonconvex fraction function is studied to approximate the rank of a matrix and translate this NP-hard 

problem into a transformed affine matrix rank minimization problem. The equivalence between these 

two problems is established, and we proved that the uniqueness of the global minimizer of transformed 

affine matrix rank minimization problem also solves affine matrix rank minimization problem if some 

conditions are satisfied. Moreover, we also proved that the optimal solution to the transformed affine 

matrix rank minimization problem can be approximately obtained by solving its regularization problem 

for some proper smaller λ> 0. Lastly, the DC algorithm is utilized to solve the regularization transformed 

affine matrix rank minimization problem and the numerical experiments on image inpainting problems 

show that our method performs effectively in recovering low-rank images compared with some state-of- 

art algorithms. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The goal of affine matrix rank minimization (AMRM) problem 

is to reconstruct a low-rank or approximately low-rank matrix that 

satisfies a given system of linear equality constraints. In mathe- 

matics, it can be described as the following minimization problem 

( AMRM ) min 

X∈ R m ×n 
rank (X ) s.t. A (X ) = b, (1) 

where A : R 

m ×n �→ R 

d is the linear map and the vector b ∈ R 

d . 

Without loss of generality, we assume m ≤ n . Many applications 

arising in various areas can be captured by solving the problem 

(AMRM), for instance, the network localization [1] , the minimum 

order system and low-dimensional Euclidean embedding in con- 

trol theory [2,3] , the collaborative filtering in recommender sys- 

tems [4,5] , and so on. One important special case of the problem 
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(AMRM) is the matrix completion (MC) problem [4] 

( MC ) min 

X∈ R m ×n 
rank (X ) s.t. X i, j = M i, j , (i, j) ∈ �. (2) 

This completion problem has been applied in the famous Net- 

flix problem [6] , image inpainting problem [7] and machine learn- 

ing [8,9] . In general, however, the problem (AMRM) is a challeng- 

ing non-convex optimization problem and is known as NP-hard 

[10] due to the combinational nature of the rank function. 

Among the numerous substitution models, the nuclear-norm 

affine matrix rank minimization (NAMRM) problem has been con- 

sidered as the most popular alternative [3,4,11–13] : 

( NAMRM ) min 

X∈ R m ×n 
‖ X ‖ ∗ s.t. A (X ) = b. (3) 

where ‖ X ‖ ∗ = 

∑ m 

i =1 σi (X ) is the nuclear-norm of the matrix X ∈ 

R 

m ×n . Recht et al. in [10] have show that if a certain re- 

stricted isometry property (RIP) holds for the linear transformation 

defining the constraints, the minimum rank solution of problem 

(AMRM) can be recovered by solving the problem (NAMRM). In 

addition, some popular methods, including singular value thresh- 

olding algorithm [14] , proximal gradient algorithm [15] and accel- 

erated proximal gradient algorithm [16] , are proposed to solve its 
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regularization (or Lagrangian) version: 

( RNAMRM ) min 

X∈ R m ×n 

{ 

‖A (X ) − b‖ 

2 
2 + λ‖ X ‖ ∗

} 

, (4) 

where λ> 0 is the regularization parameter can be selected to 

guarantee that solutions of the problem (NAMRM) and (RNAMRM) 

are same [17] . However, these algorithms tend to have biased esti- 

mation by shrinking all the singular values toward zero simultane- 

ously, and sometimes results in over-penalization in the regulariza- 

tion problem (RNAMRM) as the � 1 -norm in compressive sensing. 

Moreover, with the recent development of non-convex relaxation 

approach in sparse signal recovery problems, many researchers 

have shown that using a non-convex surrogate function to approx- 

imate the � 0 -norm is a better choice than using the � 1 -norm. This 

brings our attention back to the non-convex surrogate functions of 

the rank function. 

In this paper, a continuous promoting low-rank non-convex 

function 

P a (X ) = 

m ∑ 

i =1 

ρa (σi (X )) = 

m ∑ 

i =1 

aσi (X ) 

aσi (X ) + 1 

(5) 

in terms of the singular values of matrix X is considered to substi- 

tute the rank function rank( X ) in the problem (AMRM), where the 

non-convex function 

ρa (t ) = 

a | t | 
a | t | + 1 

(a > 0) (6) 

is the fraction function. It is to see clearly that, with the change of 

parameter a > 0, the non-convex function P a ( X ) approximates the 

rank of matrix X : 

lim 

a → + ∞ 

P a (X ) = lim 

a → + ∞ 

m ∑ 

i =1 

aσi (X ) 

aσi (X ) + 1 

≈
{

0 , if σi (X ) = 0 ;
rank (X ) , if σi (X ) > 0 . 

(7) 

By this transformation, the NP-hard problem (AMRM) could be re- 

laxed into the following matrix rank minimization problem with a 

continuous non-convex penalty, namely, transformed affine matrix 

rank minimization (TrAMRM) problem: 

( TrAMRM ) min 

X∈ R m ×n 
P a (X ) s.t. A (X ) = b, (8) 

where the non-convex surrogate function P a ( X ) in terms of the sin- 

gular values of matrix X is defined in (5) . Unfortunately, although 

we relax the NP-hard problem (AMRM) into a continuous prob- 

lem (TrAMRM), this relax problem is still computationally harder 

to solve due to the non-convex nature of the function P a ( X ), in fact 

it is also NP-hard. Frequently, we consider its regularization ver- 

sion: 

( RTrAMRM ) min 

X∈ R m ×n 

{ 

‖A (X ) − b‖ 

2 
2 + λP a (X ) 

} 

, (9) 

where λ> 0 is the regularization parameter. Unlike the convex op- 

timal theory, there are no parameters λ> 0 such that the solu- 

tion to the regularization problem (RTrAMRM) also solves the con- 

strained problem (TrAMRM). However, as the unconstrained form, 

the problem (RNuAMRM) may possess much more algorithmic ad- 

vantages. Moreover, we also proved that the optimal solution to 

the problem (TrAMRM) can be approximately obtained by solving 

the problem (RTrAMRM) for some proper smaller λ> 0. 

The rest of this paper is organized as follows. Some notions 

and preliminary results that are used in this paper are given in 

Section 2 . In Section 3 , the equivalence of the problem (TrAMRM) 

and (AMRM) is established. Moreover, we proved that the opti- 

mal solution to the problem (TrAMRM) can be approximately ob- 

tained by solving the problem (RTrAMRM) for some proper smaller 

λ> 0. In Section 4 , the DC algorithm is utilized to solve the 

problem (RTrAMRM) and the numerical results of the numerical 

experiments on image inpainting problems are demonstrated in 

Section 5 . Finally, we give some concluding remarks in Section 6 . 

2. Preliminaries 

In this section, we give some notions and preliminary results 

that are used in this paper. 

2.1. Some notions 

The linear map A : R 

m ×n �→ R 

d determined by d matri- 

ces A 1 , A 2 , . . . , A d ∈ R 

m ×n can be expressed as A (X ) = (〈 A 1 , X〉 , 
〈 A 2 , X〉 , . . . , 〈 A d , X〉 ) � ∈ R 

d . Let A = ( vec (A 1 ) , vec (A 2 ) , . . . , vec (A d )) 
T ∈ 

R 

d×mn and x = v ec(X ) ∈ R 

mn . Then we can get that A (X ) = Ax . 

The standard inner product of matrices X ∈ R 

m ×n and Y ∈ R 

m ×n 

is denoted by 〈 X, Y 〉 , and 〈 X, Y 〉 = tr (Y T X ) . The A 

∗ denotes the 

adjoint of A , and for any y ∈ R 

d , A 

∗(y ) = 

∑ d 
i =1 y i A i . The singular 

value decomposition (SVD) of matrix X is X = U�V T , where U 

is an m × m unitary matrix, V is an n × n unitary matrix and 

� = Diag (σ (X )) ∈ R 

m ×n is a diagonal matrix. The vector σ ( X ): 

σ 1 ( X ) ≥σ 2 ( X ) ≥ ��� ≥σ m 

( X ) arranged in descending order repre- 

sents the singular values vector of matrix X , and σ i ( X ) denotes the 

i th largest singular value of matrix X for i = 1 , 2 , . . . , m . 

2.2. Some useful results 

Lemma 1. (see [10] ) Let M and N be matrices of the same dimen- 

sions. Then there exist matrices N 1 and N 2 such that 

(1) N = N 1 + N 2 ; 

(2) rank( N 1 ) ≤ 2rank( M ) ; 

(3) M N 2 
T = 0 and M 

T N 2 = 0 ; 

(4) 〈 N1 1 , N 2 〉 = 0 . 

By Lemma 1 , we can derive the following important corollary. 

Corollary 1. Let X 

∗ and X 0 be the optimal solutions to the problem 

(TrAMRM) and (AMRM), respectively. If we set R = X ∗ − X 0 , then there 

exist matrices R 0 and R c such that 

(1) R = R 0 + R c ; 

(2) rank( R 0 ) ≤ 2rank( X 0 ) ; 

(3) X 0 R c 
T = 0 , X 0 

T R c = 0 and 〈 R 0 , R c 〉 = 0 . 

Lemma 2. Let M and N be matrices of the same dimensions. If 

MN 

T = 0 and M 

T N = 0 , then P a (M + N) = P a (M) + P a (N) . 

Proof. Consider the SVDs of the matrices M and N : 

M = U M 

[
�M 

0 

0 0 

]
V M 

T 
, N = U N 

[
�N 0 

0 0 

]
V N 

T 
. (10) 

Since U M 

and U N are left-invertible, the condition MN 

T = 0 implies 

that V M 

T V N = 0 . Similarly, M 

T N = 0 implies that U M 

T U N = 0 . Thus, 

the following is a valid SVD for M + N, 

M + N = 

[
U M 

U N 

]
⎡ 

⎢ ⎢ ⎢ ⎣ 

�M 

0 0 0 

0 0 0 0 

0 0 �N 0 

0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

[
V M 

V N 

]T · (11) 

This shows that the singular values of M + N are equal to the union 

(with repetition) of the singular values of M and N . Hence, P a (M + 

N) = P a (M) + P a (N) . This completes the proof. �

Combing Corollary 1 and Lemma 2 , we can get the following 

corollary. 
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