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a b s t r a c t 

Diffusion magnetic resonance imaging (dMRI) is an established medical technique used for describing 

water diffusion in an organic tissue. Typically, rank-2 or 2nd-order tensors quantify this diffusion. From 

this quantification, it is possible to calculate relevant scalar measures (i.e. fractional anisotropy) employed 

in the clinical diagnosis of neurological diseases. Nonetheless, 2nd-order tensors fail to represent complex 

tissue structures like crossing fibers. To overcome this limitation, several researchers proposed a diffusion 

representation with higher order tensors (HOT), specifically 4th and 6th orders. However, the current 

acquisition protocols of dMRI data allow images with a spatial resolution between 1 mm 

3 and 2 mm 

3 , 

and this voxel size is much bigger than tissue structures. Therefore, several clinical procedures derived 

from dMRI may be inaccurate. Concerning this, interpolation has been used to enhance the resolution of 

dMRI in a tensorial space. Most interpolation methods are valid only for rank-2 tensors and a general- 

ization for HOT data is missing. In this work, we propose a probabilistic framework for performing HOT 

data interpolation. In particular, we introduce two novel probabilistic models based on the Tucker and 

the canonical decompositions. We call our approaches: Tucker decomposition process (TDP) and canon- 

ical decomposition process (CDP). We test the TDP and CDP in rank-2, 4 and 6 HOT fields. For rank-2 

tensors, we compare against direct interpolation, log-Euclidean approach, and Generalized Wishart pro- 

cesses. For rank-4 and 6 tensors, we compare against direct interpolation and raw dMRI interpolation. 

Results obtained show that TDP and CDP interpolate accurately the HOT fields in terms of Frobenius dis- 

tance, anisotropy measurements, and fiber tracts. Besides, CDP and TDP can be generalized to any rank. 

Also, the proposed framework keeps the mandatory constraint of positive definite tensors, and preserves 

morphological properties such as fractional anisotropy (FA), generalized anisotropy (GA) and tractography. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Diffusion magnetic resonance imaging (dMRI) is an established 

medical technique that non-invasively measures water diffusion in 

organic tissue. The first attempt to represent this physical phe- 

nomenon was the Gaussian model proposed by Basser, Mattiello, 

and Le Bihan (1993) ; Basser, Mattielo, and Le Bihan (1994) , where 

symmetric and positive definite tensors of rank-2 are estimated 

from dMRI to quantify the direction and orientation of diffu- 

sion. This model is known as diffusion tensor imaging (DTI). From 
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this quantification, it is possible to compute relevant physiolog- 

ical information (i.e. Fractional anisotropy and mean diffusivity) 

employed in the assessment of neurological diseases: Parkinson’s 

disease ( Butson, Maks, Walter, Vitek, & McIntyre, 2007 ), trauma 

( Ptak et al., 2003 ), multiple sclerosis ( Hasan, Gupta, Santos, Wolin- 

sky, & Narayana, 2005 ), meningitis ( Nath et al., 2007 ), among oth- 

ers. Nevertheless, rank-2 tensors fail to represent accurately some 

complex tissue structures such as: white matter fiber bundles, 

crossing fibers, and bifurcated fibers ( Mori, Crain, Chacko, & van 

Zijl, 1999; Ozarslan & Mareci, 2003 ). 

To address these limitations in dMRI, several researchers have 

proposed higher order tensor (HOT) models for describing diffu- 

sion inside complex tissue structures ( Barmpoutis & Vemuri, 2010; 

Liu, Bammer, Acar, & Moseley, 2004; Moakher, 2008; Ozarslan & 

Mareci, 2003 ). These models demonstrated accuracy and flexibility 

to represent dMRI with low signal to noise ratio. However, the es- 
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timation of HOT requires more gradient directions for each slice 

in dMRI than the ones needed for DTI ( Berman, Lanza, Blaskey, 

Edgar, & Roberts, 2013 ). Additionally, the current acquisition pro- 

tocols of dMRI restrict the images to a voxel size in a range from 1 

mm 

3 to 2 mm 

3 , no matter if the representation is with HOT or DTI. 

The problem here is that this voxel size is much bigger than tissue 

fibers and current acquired dMRI of the human brain have a broad 

resolution in comparison to anatomical structures. Therefore, the 

analysis of microstructural features can be difficult and some clin- 

ical procedures derived from dMRI may be inaccurate ( Dirby et al., 

2014 ). 

Interpolation of tensor fields is a feasible methodology to re- 

duce the voxel size in dMRI and achieves clinical relevance in re- 

construction of tissue fiber bundles for tractography. Furthermore, 

interpolation of tensor fields is important in any application where 

estimating data among nearby tensors is required, including im- 

age registration ( Yassine & McGraw, 2009 ). A considerable num- 

ber of methods for tensorial interpolation have been proposed 

in the literature, including direct linear interpolation ( Pajevic, Al- 

droubi, & Basser, 2002 ), log-Euclidean space ( Arsigny, Fillard, 

Pennec, & Ayache, 2006 ), b-splines ( Barmpoutis, Vemuri, Shep- 

herd, & Forder, 2007 ), Riemannian manifolds ( Fletcher & Joshi, 

2007; Pennec, Fillard, & Ayache, 2006 ), feature-based framework 

( Yang et al., 2012 ), geodesic loxodromes ( Kindlmann, Estepar, Ni- 

ethammer, Haker, & Westin, 2007 ) and generalized Wishart pro- 

cesses ( Vargas Cardona, Alvarez, & Orozco, 2015 ). They have dif- 

ferent shortcomings. For example, linear interpolation does not 

ensure positive definite tensors ( Pajevic et al., 2002 ), and the 

works of Arsigny et al. (2006) ; Fletcher and Joshi (2007) and 

Pennec et al. (2006) are highly affected by the intrinsic Rician 

noise added in dMRI during acquisition. Remarkably, the most sig- 

nificant limitation for all the approaches mentioned is that they 

are exclusively valid for rank-2 tensors (DTI), and only the linear 

interpolation can easily be employed on HOT fields. As we pointed 

out before, DTI is deficient to represent complex tissue structures. 

For this reason, it is necessary a tensorial interpolation methodol- 

ogy that can be generalized to any order. The aim is to achieve a 

more accurate representation of the brain tissue. 

Regarding HOT field interpolation, the authors of Yassine and 

McGraw (20 08, 20 09) developed a method based on tensor subdi- 

vision and minimization of two properties (curl and divergence) 

of the field for interpolation of 4th-order tensors. However, the 

works in Yassine and McGraw (20 08, 20 09) only reported out- 

comes for rank-4 tensor fields, and the methods do not have a 

clear extension to higher orders, lacking generalization. Another 

valid approach is to interpolate the dMRI before the tensor re- 

construction. For example, in Dirby et al. (2014) , it was demon- 

strated that interpolation of raw dMRI with conventional meth- 

ods (linear, bicubic and b-spline) can reveal anatomical details only 

seen in very high resolution images. Though, this framework may 

produce the undesirable swelling effect in tensors ( Yang et al., 

2014 ) and blurs the tract boundaries ( Dirby et al., 2014 ). Also, 

authors in Astola and Florack (2009) ; Astola, Jalba, Balmashnova, 

and Florack (2011) introduced an approach to perform probabilis- 

tic tractography in HOT data. In particular, they developed a Finsler 

geometry-based methodology for multi-fiber analysis. The Finsler 

geometry model is able to perform probabilistic tractography in 

HOT fields using the orientation distribution function (ODF), and 

it is a generalization of the streamline method applied on DTI 

( Astola et al., 2011 ). Nevertheless, a derived method of Finsler ge- 

ometry for interpolation has not been developed yet. 

To the best of our knowledge, there is not a generalized 

methodology for interpolating HOT fields (no matter the rank), 

that retains all mandatory constraints for tensorial representation 

of dMRI. In this work, we propose a novel methodology to perform 

interpolation in HOT fields of any order. In this regard, we employ 

tensor representations and modulate their parameters with Gaus- 

sian processes (GPs), aiming to estimate new data with robust- 

ness, considering that GPs are functions of a multi-dimensional in- 

put variable. Specifically, we introduce two probabilistic models, 

that we refer to as the Tucker decomposition process (TDP) and 

the canonical decomposition process (CDP). Our models are based 

on the Tucker and canonical decomposition of tensors ( Carroll 

& Chang, 1970; Gulliksen & Frederiksen, 1964 ), respectively. The 

main advantage of tensor decompositions is the transformation of 

a complex mathematical object in a superposition of scalars, vec- 

tors or matrices. These simple representations allow to index a 

tensor in an independent variable (i.e. spatial coordinates), facili- 

tating the probabilistic modeling of tensor fields, no matter the or- 

der (rank). We test the TDP and CDP in 2nd, 4th and 6th rank HOT 

fields. For rank-2 tensors, we compare against direct interpolation 

( Pajevic et al., 2002 ), log-Euclidean approach ( Arsigny et al., 2006 ), 

and Generalized Wishart processes ( Vargas Cardona et al., 2015 ). 

For rank-4 and rank-6 tensors we compare against direct interpola- 

tion and raw dMRI interpolation with b-splines ( Dirby et al., 2014 ). 

Results obtained show that TDP and CDP interpolate accurately the 

HOT fields, and generalize to any rank. Importantly, the proposed 

framework safeguards the mandatory constraint of positive defi- 

nite tensors, and preserve morphological properties such as frac- 

tional anisotropy (FA), white matter (WM) segmentation, general- 

ized anisotropy (GA), and tractography. 

2. Materials and methods 

In this section, we first define the proposed framework. Sec- 

ond, we briefly explain the main concepts of a Gaussian process. 

Then, we introduce the Tucker and canonical decomposition of a 

tensor, and we describe the priors that we use to represent ten- 

sorial fields by combining the Tucker and canonical decomposition 

with Gaussian processes. Also, we introduce the higher order ten- 

sors for modeling dMRI data. Bayesian inference for the proposed 

probabilistic models is then discussed. Finally, we give details of 

the experimental setup. 

2.1. Proposed approach for tensor interpolation 

A tensor is a geometric or physical object specified by a set of 

coefficients T i 1 i 2 ... i l of a multi-linear form T = φ(x 1 , x 2 , . . . , x l ) ∈ 

K 

I 1 ×I 2 ×... ×I l of l vector arguments x 1 , x 2 , . . . , x l written in some or- 

thonormal basis, where K may refer to R (real) or C (complex). 

The number l is known as the order or rank of the tensor and 

each vector argument has an independent (may be different) di- 

mensionality. Alternatively, a tensor can be represented in several 

forms employing vectorial or matrix approximations: 

T ∼ M ( α1 , α2 , . . . , αm 

) , 

being M ∈ K 

I 1 ×I 2 ×... ×I l any vectorial or matrix decomposition of 

T , and α1 , α2 , . . . , αm 

parameters of the given representation. Fol- 

lowing this notion, our main goal is to develop probabilistic mod- 

els (PM) over tensors indexed by an independent variable z = 

[ z 1 , z 2 , . . . , z J ] 
� , being J the dimensionality of z . For example, if z 

refers to spatial coordinates, then, z = [ x, y, z] � and J = 3 . The PM 

can be seen as probability distributions over a tensor field, this 

is, a grid of interconnected and related tensors. Furthermore, such 

probability distributions allow the interpolation of new tensor data 

for any input locations ( z ∗ ), according to the following definition: 

T (z ) ∼ M ( α1 (z ) , α2 (z ) , . . . , αm 

(z ) ) , (1) 

where M is a tensor representation, and α1 (z ) , α2 (z ) , . . . , αm 

(z ) 

are free parameters that depend on the mathematical definition 

of M . The probabilistic nature of M arises because the parame- 

ters α1 (z ) , α2 (z ) , . . . , αm 

(z ) are realizations of stochastic processes. 
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