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A B S T R A C T

Global gridded crop models (GGCMs) are essential tools for estimating agricultural crop yields and externalities
at large scales, typically at coarse spatial resolutions. Higher resolution estimates are required for robust agri-
cultural assessments at regional and local scales, where the applicability of GGCMs is often limited by low data
availability and high computational demand. An approach to bridge this gap is the application of meta-models
trained on GGCM output data to covariates of high spatial resolution. In this study, we explore two machine
learning approaches – extreme gradient boosting and random forests - to develop meta-models for the prediction
of crop model outputs at fine spatial resolutions. Machine learning algorithms are trained on global scale maize
simulations of a GGCM and exemplary applied to the extent of Mexico at a finer spatial resolution. Results show
very high accuracy with R2>0.96 for predictions of maize yields as well as the hydrologic externalities eva-
potranspiration and crop available water with also low mean bias in all cases. While limited sets of covariates
such as annual climate data alone provide satisfactory results already, a comprehensive set of predictors covering
annual, growing season, and monthly climate data is required to obtain high performance in reproducing cli-
mate-driven inter-annual crop yield variability. The findings presented herein provide a first proof of concept
that machine learning methods are highly suitable for building crop meta-models for spatio-temporal down-
scaling and indicate potential for further developments towards scalable crop model emulators.

1. Introduction

In recent years, global gridded crop models (GGCMs) - combinations
of a crop model and global sets of gridded data - have become essential
tools for estimating crop yields and agricultural externalities under a
wide range of environmental and management conditions (e.g. Müller
et al., 2017). Besides the direct provision and interpretation of model
outputs for crop yields alone (e.g. Rosenzweig et al., 2014) or their joint
evaluation with externalities such as crop water use (Liu et al., 2013;
Elliott et al., 2015), GGCMs provide base layers of input data for agro-
economic or integrated assessment models (IAMs; Müller and
Robertson (2014)) e.g. for land use change analyses and optimization
(e.g. Havlík et al., 2011).

The present global standard resolution of input data is 0.5° x 0.5°
corresponding to approx. 50 km x 50 km near the equator. This is
foremost determined by climate data, which are rarely available at

higher resolutions at a global scale. Further common input data are
management information and in most cases soil data and topography
(Müller et al., 2017). The latter two are available at increasingly fine
resolutions well below 1 km (Hengl et al., 2017a; Jarvis et al., 2008),
while management is typically reported at national or subnational ad-
ministrative levels (e.g. Sacks et al., 2010; Mueller et al., 2012). In few
cases, simulations are run at the sub-grid level accounting for some
heterogeneity in soil and topography (Skalský et al., 2008; Balkovič
et al., 2014). Regardless of the spatial resolution, each simulation unit is
treated as a homogenous field in the crop model.

While this spatial resolution provides sufficient detail for robust
assessments at macro scales such as the country level, there is in-
creasing concern that GGCM estimates and hence impact assessments at
coarse resolutions often miss actual on-ground conditions. As only
average or dominant characteristics present within each grid are con-
sidered for simulations, assumptions and data may not match actually
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farmed land (e.g. Folberth et al., 2016) and farming practices (e.g.
Reidsma et al., 2009). In addition, they may omit farm-level hetero-
geneity present at the sub-grid level (Ewert et al., 2011), which is es-
sential for local to regional decision-making and stakeholder informa-
tion (Rosenzweig et al., 2018).

Applying gridded crop models at very high spatial resolutions on the
other hand increases computational demand substantially and is often
limited by data availability as outlined above. Foremost climate data at
suitable temporal resolutions for crop models - which is typically a daily
time step (Müller et al., 2017) - are hardly available at fine spatial re-
solutions. The presently highest resolving global daily dataset known to
the authors has 0.25° x 0.25° (Ruane et al., 2015), while regional pro-
ducts may have resolutions of up to 0.11° x 0.11° (Haylock et al., 2008).
Temporally coarser data e.g. with a monthly time step, however, are
available at very fine resolutions up to< 1 km (e.g. Wang et al., 2016;
Fick and Hijmans, 2017).

An approach lending itself to address these issues in an efficient and
flexible way is the use of meta-models built from coarser GGCM si-
mulations. This allows for deriving estimates of crop yields and asso-
ciated agricultural externalities at high, virtually scale-free, spatial re-
solutions without requirements for setting up high-resolution crop
model infrastructures including their comprehensive data require-
ments. There is no scientific literature on crop meta-model develop-
ment for spatio-temporal predictions across scales known to the au-
thors. The potentially most closely related field is the recently evolving
crop model emulator development at the grid cell level. Examples are
the development of regressions along climate change trajectories as
such (e.g. Blanc and Sultan, 2015; Blanc, 2017) or the use of global crop
model simulations with artificial alterations of climate variables to re-
trieve estimates of climate change impacts for assessment studies based
on regressions along temperature, precipitation, and CO2 concentra-
tions (Ruane et al., 2017; Rosenzweig et al., 2018). The production of
high-resolution crop yield surfaces in contrast is foremost accomplished
using simplified crop model algorithms (e.g. IIASA/FAO, 2012) or
purely statistical approaches (e.g. Mueller et al., 2012). Common to all
referenced approaches is that they (a) are based on narrow sets of a
priori selected covariates based on modelers’ assumptions and (b) do not
allow for or have not been tested for the joint evaluation of agricultural
productivity and externalities. Crop model emulators are in addition
typically parameterized at the grid level, which renders them spatially
determined and scale-depended.

The presently most flexible approaches for data-driven development
of models with high accuracy can be found in the field of machine
learning. Machine learning is a collective term for a wide range of data
analysis and data-driven forecasting techniques. The most advanced
techniques are characterized by the ability to digest large amounts of
covariates (herein syn. features, syn. predictors) to provide predictions
for both numeric and categorical variables with algorithms of high
complexity and flexibility, which determine the relevance of provided
covariates themselves (e.g. Witten et al., 2016). Examples of metho-
dologic approaches are neural networks, various forms and derivatives
of regression trees, as well as clustering techniques. While simpler
methods such as multiple linear or lasso regressions are typically
computationally faster and straightforward to interpret, they show ty-
pically a substantially lower performance. Within agricultural sciences,
applications are to date mostly limited to processing and analyzes of
remote sensing data (e.g. Duro et al., 2012; Ali et al., 2015). Few ex-
ceptions are the development of crop nutrient response models for
studying yield responses in sub-Saharan Africa based on field trial data
(Hengl et al., 2017b) and the use of data mining tools for identifying
crop growth limitations (Delerce et al., 2016).

In this study, we evaluate machine learning as an approach for
building crop meta-models. The focus is on the feasibility to use low-
resolution global crop simulations of maize yield potential for predic-
tions at a high resolution, here exemplary the extent of Mexico, as
depicted schematically in Fig. 1. Non-nutrient and pest limited yield

potentials (Lobell et al., 2009) with and without sufficient water supply
were selected as a target variable as they allow for a thorough eva-
luation of climate-related covariates without inference from soil nu-
trient trajectories. Two of the presently most flexible and in recent
competitions best performing (Fernández-Delgado, 2014; Chen and
Guestrin, 2016) machine learning approaches for numeric predictions,
extreme gradient boosting and random forests, are tested and compared
against crop model simulations carried out at the finer resolution. Ob-
jectives of the study are to (a) evaluate the meta-model performance in
downscaling the low-resolution global yield simulation to high-resolu-
tion predictions in the study region of Mexico, (b) identify most im-
portant covariates required by the meta-model, and (c) test the ap-
proach for predictions of selected agricultural externalities across
scales. To provide an exemplary application case, machine learning
model predictions are performed at a very high spatial resolution
(1 km x 1 km) in major producing areas and benchmarked against re-
ported inter-annual yield variability, a key performance indicator for
climate change impact assessments (Müller et al., 2017). Finally, an
outlook provides suggestions for further steps to extend the models’
capabilities.

2. Methods and data

2.1. Gridded crop model description

Crop simulations were carried out using a gridded version of the
Environmental Policy Integrated Climate model (EPIC). EPIC was in-
itially developed to assess the impacts of management on crop yields
(Williams, 1995). It has constantly been updated to cover additional
processes such as effects of elevated atmospheric CO2 concentration on
plant growth (Stockle et al., 1992), detailed soil organic matter cycling
(Izaurralde et al., 2006, 2012), and an extended number of crop types
and cultivars (e.g. Kiniry et al., 1995; Gaiser et al., 2010) among others
(see Gassman et al. (2004)). More details of the crop growth model are
provided in Supplementary Text S1.

The gridded version of EPIC used here, EPIC-IIASA (Balkovič et al.,
2014), runs the EPIC model for a given set of simulation units derived
from intersecting homogenous response units (soil and topography),
administrative borders, and climate grids (Skalský et al., 2008).
Thereby, each simulation unit is treated as a representative, homo-
genous field.

2.2. Study regions, delineation of simulation units, and simulation period

Simulations and meta-model predictions were performed (a) at the
global scale at a coarse spatial resolution and (b) for Mexico at a finer
resolution. The latter was selected as an exemplary study region as it
encompasses the three major climates tropic, temperate, and (semi-)
arid and has a large coverage of maize harvest areas. The basic spatial
resolutions at the two scales were grids of 5’ (global) and 0.5’ (Mexico),
respectively, serving also as basic references for spatial harmonization
of all underlying input data (topography, soil, and land cover).
Individual pixels were aggregated to homogeneous response units
(HRUs) based on slope, altitude and soil classes. HRU provide ag-
gregated spatial units which are expected to be homogenous in their
bio-physical response and relatively stable over time. The basic bio-
physical drivers assumed for an HRU are hardly adjustable by farmers,
which allows for analyzing impacts of the same management practices
employed across a variety of natural conditions. Intersecting HRUs with
administrative units (countries globally and states for Mexico) and the
climate grids of 0.5° x 0.5° and 0.25° x 0.25° resolution at the global and
Mexican scale, respectively, resulted in final simulation units with a
total number of 1.3× 105 globally and 2.3× 105 for Mexico. Spatially
explicit inputs for EPIC on topography and soil were then calculated as
mean (altitude) or majority (slope, soil) values across all pixels within
the simulation unit. Additional evaluations were carried out for the
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