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A B S T R A C T

This article presents an analysis of the response of the annual crop yield in five main dryland cultivations in the
United States to different time-scales of drought, and explores the environmental and climatic characteristics
that determine the response. For this purpose we analysed barley, winter wheat, soybean, corn and cotton.
Drought was quantified by means of the Standardized Precipitation Evapotranspiration Index (SPEI). The results
demonstrate a strong response in the interannual variability of crop yields to the drought time-scales in the
different cultivations. Moreover, the response is highly spatially variable. Crop types showed considerable dif-
ferences in the month in which their yields are most strongly linked to drought conditions. Some crops (e.g.
winter wheat) responded to drought at medium to long SPEI time-scales, while other crops (e.g. soybean and
corn) responded to short or long drought time-scales. The study confirms that the differences in the patterns of
crop yield response to drought time-scales are mostly controlled by average climate conditions, in general, and
water availability (precipitation), in particular. Generally, we found that there is a weaker link between crop
yield and drought severity in humid environments and also that the response tends to occur over longer time-
scales.

1. Introduction

Long-term changes in large-scale crop production are driven by
processes related to management and technical improvement (Fischer
and Edmeades, 2010; Grassini et al., 2013). Thus, crop production has
substantially increased at the global scale, supporting the needs of the
increasing population. Nevertheless, the increase in crop productivity is
a non-linear process over time, given that crop yields vary from year to
year, with episodes characterized by yield reductions or crop failures
(Ciais et al., 2005; Lobell et al., 2011a, b). There are numerous factors
that can explain the temporal variability in crop yield. In addition to
factors like diseases, social crisis and wars (Stanhill, 1976; Oerke, 2006;
Wrather et al., 2001), climate variability is also a key controller of
variations in crop yield (Lobell et al., 2007; Schlenker and Roberts,
2009). In particular, some meteorological hazards (e.g. frost, heat

waves, hail, floods) may affect plant development and accordingly
decrease crop production (Ciais et al., 2005; Lobell et al., 2011b; Asseng
et al., 2011). Nevertheless, drought is considered the main climatic
hazard impacting crop yield in many areas worldwide (Porter and
Semenov, 2005; Barnabás et al., 2008; Farooq et al., 2009).

Although temperature and light are essential for plant growth, as
they are important factors for photosynthetic activity (Nemani et al.,
2003), water availability, in the form of soil moisture, is essential for
plant growth and crop development, specifically during the critical
phenological phases for a given crop (e.g. Barnabás et al., 2008;
Ramadas and Govindaraju, 2015). However, assessing the impacts of
drought on crop yield is not straight forward for a variety of reasons: i)
vegetation types may have different resistance, times of response and
resilience to water deficits as a consequence of different phenological,
physiological and morphological strategies to cope with water deficits
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(Chaves et al., 2003), ii) drought is the most complex natural hazard,
which makes it very difficult to study, particularly given the difficulty
of establishing an unitary multidisciplinary definition of drought
(Wilhite and Glantz, 1985; Lloyd-Hughes, 2014); iii) drought is difficult
to quantify since there is no single climatic variable that can be em-
ployed to quantify drought severity, with the choice of variable (and
appropriate timescale; McKee et al., 1993) being dependent on the type
of impact that is of interest (Vicente-Serrano, 2016); iv) there are dif-
ficulties in defining the beginning, end, spatial extent and total severity
of drought, which makes its quantification much more difficult; and v)
the convergence of multiple climate factors trigger drought; although
precipitation is the most important variable for determining drought
severity, other variables that condition the atmospheric evaporative
demand (AED) are also relevant and can be more important than pre-
cipitation (Narasimhan and Srinivasan, 2005; Hobbins et al., 2016;
McEvoy et al., 2016).

The concept of drought time-scale, developed in the 1990s, altered
the way in which drought is quantified and drought impacts are ana-
lysed. This concept was introduced to characterize the various response
times, or lags, of different components of the terrestrial water cycle
(streamflow, groundwater, etc.) to precipitation deficits (McKee et al.,
1993), as hydrological drought conditions may be impacted by different
climatic drought time-scales, as a function of different hydrological
systems and regions (e.g. Lorenzo-Lacruz et al., 2010; 2012; Barker
et al., 2015). The term time-scale has recently been applied in the
quantification of the drought effects on natural vegetation commu-
nities, given the different resistance of vegetation types that makes their
response highly dependent on drought time-scale (Ji and Peters, 2003;
Pasho et al., 2011; Arzac et al., 2016; Vicente-Serrano et al., 2013,
2015). Robust and flexible drought indices can be calculated on dif-
ferent time scales, among them the Standardized Precipitation Index
(SPI) (McKee et al., 1993), the Standardized Precipitation Evapo-
transpiration Index (SPEI) (Vicente-Serrano et al., 2010) and the
Standardized Palmer Drought Index (SPDI) (Ma et al., 2014).

Drought indices have been widely used to explain crop yield
anomalies (Easterling et al., 1988; Quiring and Papakryiakou, 2003;
Kola et al., 2014; Tunalioclu and Durdu, 2012; Benitez and Domecq,
2014; Arshad et al., 2013) and to develop statistical models to predict
crop yields (Vicente-Serrano and Cuadrat, 2006; Subash and Ram
Mohan, 2011; Sadat Noori et al., 2012; Dutta et al., 2013; Ming et al.,
2015; Scian, 2004; Potopova et al., 2016b). Nevertheless, multi-scalar
drought indices are more skillful in identifying the influence of drought
severity on crop yields, compared to other drought indices (Vicente-
Serrano et al., 2012; Wang et al., 2016a,b). Among them, the SPEI has
been widely used to analyse the impacts of crops on different cultiva-
tions in varied regions worldwide, including China (Ming et al., 2015;
Wang et al., 2016a, b; Chen et al., 2016), the Iberian Peninsula (Pescoa
et al., 2016), Slovakia (Labudova et al., 2016), Czech Republic
(Potopova et al., 2016), Moldova (Potopova et al., 2015), South Africa
(Araujo et al., 2016), U.S. (Moorhead et al., 2015) and the whole
European continent (Gunst et al., 2015). These studies demonstrate that
the SPEI performs better than other indices in identifying drought im-
pacts on crop yields at regional and global scales (Vicente-Serrano
et al., 2012; Gunst et al., 2015; Wang et al., 2016a, b; Chen et al., 2016;
Labudova et al., 2016). The AED is included in the calculation of the
SPEI. This is relevant since different studies have stressed the negative
influence of temperature-driven evaporative demand and crop yields,
given its influence on soil moisture and vegetation stress conditions
(Asseng et al., 2004; Schlenker and Roberts, 2009; Lobell et al., 2003;
2007). A representative example is Lobell et al. (2014) who analysed
the sensitivity of corn yields to drought in the U.S., indicating that the
sensitivity to drought stress increased in crops associated with high
vapor pressure deficits, thus underlining the need for considering AED
in drought quantification tools.

The United States is one of the main crop producers in the world,
with a high percentage of the total global production of some crops (e.g.

corn, soybean and wheat) (FAO, 2013). Numerous studies have ana-
lysed the response of crop yields to interannual variability of drought
indices in the United States (e.g. Easterling et al., 1988; Moorhead
et al., 2015; Rohli et al., 2016). Nevertheless, there are very few studies
that consider the connection between different drought time-scales and
different crops (e.g. Zipper et al., 2016). Correspondingly, to the au-
thors’ knowledge there are no studies that determine the climatic and
environmental drivers controlling crop yield responses to drought time-
scales. Hence, in this study, we analyse the response of the annual crop
yield in five main dryland cultivations in the United States to different
time-scales of drought using the SPEI. The objective of this study is to
identify possible spatial patterns in the response of crop types to
drought at different time scales and to define the environmental and
climatic characteristics that determine these patterns.

2. Data and methods

2.1. Data

2.1.1. Crop yield data
We used the entire dataset of the United States Department of

Agriculture (National Agriculture Statistics Service), which was ob-
tained through https://quickstats.nass.usda.gov/#AF9A0104-19EF-
3BFE-90D2-C67700892F3E. This portal provides production statistics
for different cultivations per unit of surface at the county level. We
obtained the county production data for five different dryland culti-
vations: barley, winter wheat, soybean, corn and cotton. We did not
include the yield of these cultivations in irrigated lands. Annual pro-
ductions were obtained for each county and the information was scaled
to the same units (Metric Tons/Ha). Data were obtained independently
of the surface covered by the different crop types in each county.
However, as crop types were not represented over large surfaces in
some counties, we decided to exclude those counties with each crop
type covering only a low percentage of the total surface of the county
(< 1%) (https://www.nass.usda.gov/Charts_and_Maps/Crops_County/
#ctp) (Fig. 1).

Annual crop yield series in each county shows a strong positive
trend since the 1960s, as a consequence of the ongoing technological
and management improvements (Egli, 2008). To eliminate this effect,
the series were de-trended by using a linear regression model fitted to
crop yield series (dependent variable) and time (independent variable).
The average crop yield of each series was added to the residual series of
the model to produce the de-trended yield data in Metric Tons/Ha.

2.1.2. Climate data
We employed the PRISM (Parameter-elevation Relationships on

Independent Slopes Model) gridded data set developed by the Oregon
State University (http://www.prism.oregonstate.edu/). We used
monthly data series for precipitation, maximum and minimum air
temperatures from 1961 to 2014 at a grid interval of 30 s. PRISM data
have already been validated (Daly et al., 2008) and widely used for
climatic, hydrological, agricultural and environmental applications
(e.g. Lutz et al., 2010; Bandaru et al., 2017; Bodner and Robles, 2017).

2.1.3. Normalized Difference Vegetation Index data and water field
capacity

We used the NOAA-AVHRR NDVI dataset (https://www.star.nesdis.
noaa.gov/smcd/emb/vci/VH/vh_browse.php) (Vargas et al., 2009) at a
spatial resolution of 16 km2 to characterise the different responses of
crop yield to drought time-scales. NDVI is calculated as:

=
−

+

NIR VIS
NIR VIS

NDVI ( )
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Where NIR and VIS refer to the near-infrared’ and visible wavelengths
of spectrum.

The NDVI is closely related to the total biomass and leaf area index
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