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We study the series s(n, x) which is the sum for k from 1 to 
n of the square of the sine of the product x Gamma(k)/k, 
where x is a variable. By Wilson’s theorem we show that the 
integer part of s(n, x) for x = Pi/2 is the number of primes 
less or equal to n and we get a similar formula for x a rational 
multiple of Pi. We show that for almost all x in the Lebesgue 
measure s(n, x) is equivalent to n/2 when n tends to infinity, 
while for almost all x in the Baire sense, 1/2 is a limit point 
of the ratio of s(n, x) to the number of primes less or equal 
to n.

© 2018 Published by Elsevier Inc.

1. Introduction

Let Π(n) be the number of primes p ≤ n. A slight improvement on a formula (see 
Fig. 1) of Willans [3] gives a simple formula for Π(n) as the integer part of the sum

n∑
k=1

sin2
(
πΓ(k)

2k

)
(1)

E-mail address: alain@connes.org.

https://doi.org/10.1016/j.jnt.2018.07.014
0022-314X/© 2018 Published by Elsevier Inc.

https://doi.org/10.1016/j.jnt.2018.07.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:alain@connes.org
https://doi.org/10.1016/j.jnt.2018.07.014


JID:YJNTH AID:6098 /FLA [m1L; v1.242; Prn:23/08/2018; 9:51] P.2 (1-7)
2 A. Connes / Journal of Number Theory ••• (••••) •••–•••

Fig. 1. The formula of Willans.

When one tries to compute naively the right hand side one finds that it requires an 
increasing precision on the numerical value of the number π whose first 2500 decimals 
are needed to compute Π(n) for n of the order of a thousand. F. Villegas suggested to 
replace π by a variable and analyze the dependence on x in the above sequence. Thus 
for n > 1 an integer and x ∈ R, let

s(n, x) :=
n∑

k=1

sin2
(
xΓ(k)
k

)
(2)

We shall show below that the dependence on x ∈ R is quite interesting inasmuch as the 
terms of the sum (1) are independent random variables when suitably understood as 
functions on an almost periodic compactification G of R. This easily gives by the strong 
law of large numbers that for almost all x ∈ R in the sense of the Lebesgue measure one 
has when n → ∞ that s(n, x) ∼ n

2 . The interesting fact is that for the other natural 
notion of “generic” real number, namely the one provided by the Baire theory of dense 
countable intersections of open sets, it is a totally different behavior of the sequence 
s(n, x) which is generic: we show in Theorem 4.1 that for generic x ∈ R, the quotients 
s(n,x)
Π(n) get arbitrarily close to 1

2 , i.e. 1
2 is a limit point of the sequence

1
2 ∈ lim

n→∞
s(n, x)
Π(n) .

Generically this sequence will also have ∞ as a limit point and will oscillate wildly. 
But for rational multiples of π the sequence s(n, x) behaves like the product of Π(n) by 
the rational number1 1

2 − μ(b)
2φ(b) which only depends upon the denominator b > 1 of the 

irreducible fraction x = a
bπ as a multiple of π (see Proposition 3.1).

2. Π(n) and sum of squared sines

We start with the following variant of the formulas of Willans [3].

Proposition 2.1. Let n > 1 be an integer then Π(n) is the integer part of s(n, π2 ).

1 μ is the Möebius function and φ the Euler totient function.
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