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In 1927, Artin conjectured that any integer other than −1 or 
a perfect square generates the multiplicative group (Z/pZ)×
for infinitely many p. In 2000, Moree and Stevenhagen 
considered a two-variable version of this problem, and proved 
a positive density result conditionally to the generalized 
Riemann Hypothesis by adapting a proof by Hooley for the 
original conjecture. In this article, we prove an unconditional 
lower bound for this two-variable problem. In particular, we 
prove an estimate for the number of distinct primes which 
divide one of the first N terms of a non-degenerate binary 
recurrence sequence. We also prove a weaker version of the 
same theorem, and give three proofs that we consider to be 
of independent interest. The first proof uses a transcendence 
result of Stewart, the second uses a theorem of Bombieri and 
Schmidt on Thue equations and the third uses Mumford’s 
gap principle for counting points on curves by their height. 
We finally prove a disjunction theorem, where we consider 
the set of primes satisfying either our two-variable condition 
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or the original condition of Artin’s conjecture. We give an 
unconditional lower bound for the number of such primes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this article we study the two-variable analogue of Artin’s conjecture on primitive 
roots. Artin’s original conjecture suggested that for any integer a other than -1 and per-
fect squares, there are infinitely many primes p for which a generates the multiplicative 
group (Z/pZ)×. Specifically, Artin conjectured that the set

Pa(X) =
{
p ≤ X prime : 〈a mod p〉 = (Z/pZ)×

}

has positive density in the set of all primes. We can trace the origin of this problem all the 
way back to Gauss. It was apparently popular at the time to study decimal expansions of 
certain rational numbers. In his Disquisitiones Arithmeticae, Gauss describes the period 
of the decimal expansion of 1

p in terms of the order of 10 mod p. Some other such specific 
cases of this were considered before 1927, at which time Artin formulated the above 
conjecture.

As of now, the conjecture is still open. There is actually no a for which we know Pa(X)
goes to infinity as X goes to infinity. However, there have been major partial results since, 
the conditional proof by Hooley [10] under the assumption of the generalized Riemann 
Hypothesis being among the most important, as are the works of Gupta and Murty [7]
and Heath-Brown [8]. (See also [14] and [17].) For example, we know that given three 
mutually coprime numbers a, b, c, there are infinitely many primes p for which at least 
one of a, b, c is a primitive root mod p.

Many variations on Artin’s original conjecture have since been studied. Moree and 
Stevenhagen [15] considered a two-variable variant where the set of interest is

S =
{
p prime : b mod p ∈ 〈a mod p〉 ⊆ (Z/pZ)×

}

for given a and b. They adapted Hooley’s argument, as well as using some work by 
Stephens ([22]), to show a positive density result for such primes, conditionally under 
the generalized Riemann Hypothesis. In this article, we prove an unconditional lower 
bound on the number of primes in this set. Specifically, we prove the following result.

Theorem 1.1. Let a, b ∈ Z∗ with |a| �= 1. Then,

∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗
p

}∣∣	 log x.
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