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Associated to each random variable Y satisfying appropriate 
moment conditions, we introduce a different generalization of 
the Stirling numbers of the second kind. Some characteriza-
tions and specific examples of such generalized numbers are 
provided. As far as their applications are concerned, attention 
is focused in extending in various ways the classical formula 
for sums of powers on arithmetic progressions. Illustrations 
involving rising factorials, Bell polynomials, polylogarithms, 
and a certain class of Appell polynomials, in connection with 
appropriate random variables Y in each case, are discussed in 
detail.
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1. Introduction

Let N be the set of positive integers and N0 = N ∪{0}. Unless otherwise specified, we 
assume throughout this paper that f : R → R is an arbitrary function, m, n, N ∈ N0, 
and x ∈ R. Moreover, we set z = it, where i is the imaginary unit and t ∈ R with |t| < r, 
where r > 0 may change from line to line. We also denote by In(x) = xn the monomial 
function.

The celebrated formula for sums of powers on arithmetic progressions states that

N∑
k=0

In(x + k) = Bn+1(x + N + 1) −Bn+1(x)
n + 1 , (1)

where Bn(x) is the nth Bernoulli polynomial. Since the time of James Bernoulli 
(1655–1705), different generalizations of such sums have been obtained (see, for instance, 
Kannappan and Zhang [17], Guo and Zeng [13], Adell and Lekuona [3], Kim and Kim 
[18], and the references therein).

On the other hand, the usual mth forward difference of f is defined as

Δmf(x) =
m∑

k=0

(
m

k

)
(−1)m−kf(x + k). (2)

From our point of view, an interesting fact is that the sums in (1) can also be computed 
in terms of forward differences of the monomial function In(x). Actually, we have (see, 
for instance, Rosen [26, p. 199] or Spivey [27])

N∑
k=0

In(x + k) =
n∧N∑
m=0

(
N + 1
m + 1

)
ΔmIn(x), (3)

where n ∧N = min(n, N). Computationally, formulas (1) and (3) are equivalent in the 
sense that the computation of a sum of N + 1 terms is reduced to the computation of a 
polynomial in N of degree n + 1.

Finally, denote by

S(n,m;x) := ΔmIn(x)
m! , m ≤ n, (4)

the Stirling polynomials of the second kind, so that

S(n,m) := S(n,m; 0), m ≤ n, (5)

are the classical Stirling numbers of the second kind (see Abramowitz and Stegun [1]
or Roman [25, p. 60] for other equivalent definitions). Obviously, formula (3) can be 
rewritten in terms of S(n, m; x).
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