A Dirichlet's principle for the k-Hessian

Jeffrey S. Case ${ }^{\mathrm{a}}$, Yi Wang ${ }^{\mathrm{b}, *}$
${ }^{\text {a }} 109$ McAllister Building, Penn State University, University Park, PA 16802,
United States of America
b Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, 3400
N. Charles Street, Baltimore, MD 21218, United States of America

A R T I C L E I N F O

Article history:

Received 11 June 2016
Accepted 22 August 2018
Available online xxxx
Communicated by J. Wei

$M S C$:

primary 35A23
secondary 35 J 66

Keywords:
Hessian equation
Fully nonlinear PDE
Dirichlet's principle
Trace inequality

A B S T R A C T

The k-Hessian operator σ_{k} is the k-th elementary symmetric function of the eigenvalues of the Hessian. It is known that the k-Hessian equation $\sigma_{k}\left(D^{2} u\right)=f$ with Dirichlet boundary condition $u=0$ is variational; indeed, this problem can be studied by means of the k-Hessian energy $-\int u \sigma_{k}\left(D^{2} u\right)$. We construct a natural boundary functional which, when added to the k-Hessian energy, yields as its critical points solutions of k-Hessian equations with general non-vanishing boundary data. As a consequence, we establish a Dirichlet's principle for k-admissible functions with prescribed Dirichlet boundary data.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $X \subset \mathbb{R}^{n}$ be a bounded smooth domain with boundary $M=\partial X$. The usual trace inequality states that

$$
\begin{equation*}
-\int_{X} u \Delta u d x+\oint_{M} f u_{n} d \mu \geq \oint_{M} f\left(u_{f}\right)_{n} d \mu \tag{1.1}
\end{equation*}
$$

[^0]https://doi.org/10.1016/j.jfa.2018.08.024
0022-1236/© 2018 Elsevier Inc. All rights reserved.
for all $f \in C^{\infty}(M)$ and all $u \in C^{\infty}(\bar{X})$ such that $\left.u\right|_{M}=f$, where u_{n} denotes the derivative of u with respect to the outward-pointing normal along M, u_{f} is the harmonic function in X such that $\left.u_{f}\right|_{M}=f$, and $d x, d \mu$ are the volume forms on X and M, respectively. Integrating (1.1) by parts gives the Dirichlet's principle for harmonic functions:
$$
\int_{X}|\nabla u|^{2} d x \geq \int_{X}\left|\nabla u_{f}\right|^{2} d x
$$
for all u with $\left.u\right|_{M}=f$. A standard density argument implies that the trace $\operatorname{tr} u:=\left.u\right|_{M}$ extends to a bounded linear operator $\operatorname{tr}: W^{1,2}(\bar{X}) \rightarrow W^{1 / 2,2}(M)$ and the extension $E(f):=u_{f}$ extends to a bounded linear operator $E: W^{1 / 2,2}(M) \rightarrow W^{1,2}(\bar{X})$ such that $\operatorname{tr} \circ E$ is the identity.

The trace inequality (1.1) is a useful tool in many analytic and geometric problems. For example, the Dirichlet-to-Neumann map $f \mapsto\left(u_{f}\right)_{n}$ is a pseudodifferential operator with principle symbol $(-\Delta)^{1 / 2}$; indeed, it is the operator $(-\Delta)^{1 / 2}$ when $X=\mathbb{R}_{+}^{n}$ is the upper half-plane. Thus (1.1) relates the energy of the local operator $-\Delta$ to the energy of the nonlocal Dirichlet-to-Neumann operator, providing a useful tool for establishing estimates for PDEs stated in terms of the latter operator. This strategy provides a key motivation for the approach of Caffarelli and Silvestre [2] for studying fractional powers of the Laplacian.

The purpose of this article is to establish an analogue of (1.1) in terms of the k-Hessian energy $\sigma_{k}\left(D^{2} u\right)$. Here $D^{2} u$ denotes the Hessian of u and $\sigma_{k}(A)$ denotes the k-th elementary symmetric function

$$
\sigma_{k}(A):=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}}
$$

of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A. The Dirichlet problem

$$
\begin{cases}\sigma_{k}\left(D^{2} u\right)=F(x, u), & \text { in } X \tag{1.2}\\ u=f(x), & \text { on } M\end{cases}
$$

has been well-studied for functions u in the elliptic k-cone

$$
\begin{equation*}
\Gamma_{k}^{+}:=\left\{u \in C^{\infty}(\bar{X}) \mid \sigma_{j}\left(D^{2} u\right)>0,1 \leq j \leq k\right\} ; \tag{1.3}
\end{equation*}
$$

e.g. [1,5,7,9,10]. Note that the existence of a solution to (1.2) requires that M be $(k-1)$-convex [1]; i.e. the second fundamental form L of M must satisfy $\sigma_{j}(L)>0$ for $1 \leq j \leq k-1$. Of particular relevance to us is that when $F=0$, the existence and uniqueness of a solution $u \in \overline{\Gamma_{k}^{+}}$of the degenerate Dirichlet problem (1.2) is known [5,8], where $\overline{\Gamma_{k}^{+}}$is the $C^{1,1}(\bar{X})$-closure of the elliptic k-cone (1.3). Our contribution is the following Dirichlet's principle for such solutions:

https://daneshyari.com/en/article/11012924

Download Persian Version:
https://daneshyari.com/article/11012924

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jscase@psu.edu (J.S. Case), ywang@math.jhu.edu (Y. Wang).

