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A B S T R A C T

The present study evaluates the performance of five existing and three proposed antecedent moisture condition
(AMC)-based runoff curve number (CN) conversion formulae utilizing the data of a large number of naturally
observed rainfall (P)–runoff (Q) for an agricultural field located at Roorkee, Uttarakhand, India and available
published data around the globe. For developing the proposed formulae, CNs were derived for P–Q datasets from
39 watersheds using standard initial abstraction ratio (λ) values as 0.20 and 0.030. The existing formulae
outperformed the proposed formulae when tested numerically using the available National Engineering
Handbook chapter–4 (NEH–4) tabular AMC-dependent CNs as target values. It might be because the existing
formulae were derived from the same datasets used as targeted values (i.e. NEH–4 AMC defining tables).
Therefore, when tested on large set of field data, the three proposed formulae performed better than the existing
ones, the formula with λ = 0.030 the best of all.

1. Introduction

The Natural Resources Conservation Service curve number
(NRCS–CN) formerly known as the Soil Conservation Service curve
number (SCS–CN) method is the most popular method to determine the
storm event runoff from an ungauged small watershed for a given
amount of rainfall (NRCS, 1997; SCS 1972). The main reason that the
method has been adopted by most hydrologists is due to its simplicity
and applicability to ungauged watersheds with the use of only single
parameter known as curve number (CN) which is derived from catch-
ment features such as land use/cover, soil type, and 5–day antecedent
rainfall (P5) (Mishra et al., 2008a). It has been widely used in a number
of standard hydrologic models such as Areal Non-point Source Wa-
tershed Environment Response Simulation (ANSWERS) (Beasley et al.,
1980), Soil and Water Assessment Tool (SWAT) (Arnold et al., 1990;
Neitsch et al., 2002), Agricultural Non-point Source Model (AGNPS)
(Young et al., 1989), Erosion Productivity Impact Calculator (EPIC)
(Sharpley and Williams, 1990), Constrained Linear Simulation (CLS)
(Natale and Todini, 1977), Storm Water Management (Krysanova et al.,
1998), Hydrologic Engineering Center-1 (HEC-1) (HEC, 1981), Agri-
cultural Policy/Environmental eXtender (APEX) (Williams et al., 2012)
and Chemicals, Runoff, and Erosion from Agricultural Management
Systems (CREAMS) (Smith and Williams, 1980). In addition, the CN

method has also been coupled with a number of popular models like
universal soil loss equation (USLE) (Lal et al., 2017a; Mishra et al.,
2006), Modified Linear Spectral Mixture Analysis (Xu et al., 2016),
Xinanjiang runoff model (Lin et al., 2014) and ModClark (Saghafian
et al., 2016) for enhancing their ability to improve the runoff, sediment,
and environmental river flow estimation.

The general form of the SCS–CN equation is given as (SCS 1972):
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In Eq. (1), P (mm) is the rainfall, Q (mm) is the direct surface runoff,
Ia is the initial abstraction (mm) and S (mm) is the potential maximum
retention. Here, Ia is expressed as a function of S (i.e. Ia = λS) in which
λ is known as the initial abstraction ratio. The existing version of the
SCS–CN method recommended a standard value of λ = 0.20 in field
applications (SCS 1972, 1985). The research community however
pointed out that the standard value of λ = 0.20 is vague and a value of
about 0.05 or less is more practical for various parts of world (Fu et al.,
2011; Lal et al., 2015; Shi et al., 2009; Zhou and Lei, 2011).

For a given observed rainfall (P)–runoff(Q) data, S can be calculated
by solving Eq. (1), as follows (Hawkins, 1993):
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Here, S can vary in the range of 0 ≤ S ≤ ∞. Therefore, it can be
transformed into CN varying in a more appealing range, 0 ≤ CN ≤ 100,
and vice versa:
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In Eq. (3), S is in mm and CN is the dimensionless entity.
For ungauged watersheds, CN can be derived using National

Engineering Handbook chapter–4 (NEH–4) look–up tables (SCS, 1985)
based on soil type, land cover and land management practices. The
accuracy of runoff prediction, however, largely depends on accurate
estimation of the lumped parameter CN (Ponce and Hawkins, 1996),
which varies with antecedent rainfall and associated soil moisture. The
watershed moisture condition prior to rainfall is commonly called as
antecedent moisture condition (AMC), and P5 (SCS, 1956, 1971) is
often utilized as a predictor to categorize AMC into three levels,
namely, AMC-1 (dry), AMC-2 (normal), and AMC-3 (wet). In practice,
CNs are first calculated for AMC-2, and then adjusted to AMC-3 or
AMC-1 depending on P5. The findings of Hjelmfelt Jr. et al. (1981)
showed that the AMC tables given by NEH (Table 10.1, SCS 1971)
described the AMC into three classes, AMC-3, AMC-2, and AMC-1 (or
CN3, CN2 and CN1), which account statistically for 90%, 50%, and 10%,
respectively, of the cumulative probability that a given rainfall will
exceed the runoff depth. This notion is also well tested and supported
by various researchers (Haan and Schulze, 1987; Hauser and Jones,
1991). Of late, Grabau et al. (2009) and Hawkins et al. (2015) ex-
amined the same AMC tables (i.e. Table 10.1, SCS 1971) and found that
the concept of AMC-3 and AMC-1 may be better described as 88th and
12th percentiles instead of 90th and 10th percentiles, respectively. The
concept of Grabau et al. (2009) and Hawkins et al. (2015) has, however,
not yet been tested using P–Q data around the globe. Notably, AMC-2
status is considered as the reference condition, for which CN values are
derived from NEH–4 tables (SCS 1971).

In order to relate the three AMCs, a number of attempts have been
made for converting CNs of AMC-2 to AMC-1 or AMC-3 (Arnold et al.,
1990; Chow et al., 1988; Hawkins et al., 1985; Mishra et al., 2008b;
Sobhani, 1975). Firstly, Sobhani (1975), Hawkins et al. (1985) and
Chow et al. (1988) used the tabular NEH–4 (SCS 1956, 1971, 1972)
AMC-dependent CN–values for deriving mathematical expressions
useful for converting the CN of one AMC to another. Later, Arnold et al.
(1990) also developed CN–conversion formulae for using in SWAT

model developed by Agricultural Research Service of the United States
Department of Agriculture (USDA–ARS). The form of Arnold et al.
(1990) formulae is entirely different; the size of data used is however
not known, except they are based on NEH–4 table CNs. Of late, Mishra
et al. (2008b) also used the same AMC table and provided a new set of
mathematical expressions based on Fourier filtration smoothening
procedure.

Since AMC plays a significant role in runoff generation and the
runoff calculated is highly sensitive to CN, a comprehensive compara-
tive evaluation of the existing formulae and discussion on their validity
is required and it is one of the objectives of the paper. Secondly, since
all the existing formulae have been derived from the same dataset, their
validity is tested by deriving similar formulae from new dataset re-
presenting different climatic conditions. Furthermore, a new approach
incorporating the effect of λ into AMC formula was also tested utilizing
the global data.

2. CN–Conversion formulae

2.1. Sobhani (1975) formulae

The Sobhani (1975) formulae for converting the CNs from AMC-2
(CN2) to AMC-1 (CN1) or AMC-3 (CN3) are presented in Table 1. These
were developed by analyzing the AMC–dependent CN values as shown
in Table 10.1 of NEH–4 (SCS 1971, 1972), in which linear relations
were found to exist between the maximum potential retention (S) for
AMC-2 and that for AMC-1 or AMC-3. Sobhani (1975) equations are
applicable in CN–range (55, 95) as these were developed by considering
every 5th CNs (or 9 data-points) in the range (55, 95).

2.2. Hawkins et al. (1985) formulae

Hawkins et al. (1985) also used the same above AMC based NEH-4
CN table and derived the following expressions using smoothened
CN–data derived from straight line plot on normal probability paper
(Mishra et al., 2008b; Ponce and Hawkins, 1996):
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Similar to the Sobhani (1975) expressions, Eqs. (4) and (5) are also

Table 1
AMC dependent curve number conversion formulae.

Model ID Method AMC-3 AMC-1

M1 Hawkins et al. (1985) = +CN3
CN2

0.427 0.00573CN2
=CN1

CN2
2.281 0.01281CN2

M2 Mishra et al. (2008b) = +CN3
CN2

0.430 0.0057CN2
=CN1

CN2
2.2754 0.012754CN2

M3 Chow et al. (1988) = +CN3
23CN2

10 0.13CN2
=CN1

4.2CN2
10 0.058CN2

M4 Sobhani (1975) = +CN3
CN2

0.4036 0.005964CN2
=CN1

CN2
2.334 0.01334CN2

M5 Arnold et al. (1990) CN3 = CN2 exp [0.00673(100 − CN2)] = +CN CN1 2
20(100 CN2)

[100 CN2 exp{2.533 0.0636(100 CN2)}]
M6 Eq. (8) fitted for CN1 and CN3 (λ = 0.2) with 10% and 90% POE,

respectively
= +CN3

CN2
0.50503 0.00495CN2

R2 = 0.640

=CN1
CN2

1.92192 0.00922CN2
R2 = 0.472

M7 Eq. (8) fitted for CN1 and CN3 (λ = 0.2) with 12% and 88% POE,
respectively

= +CN3
CN2

0.53072 0.00469CN2
R2 = 0.641

=CN1
CN2

1.84153 0.00842CN2
R2 = 0.512

M8 Eq. (8) fitted for CN1 and CN3 (λ = 0.03) with 12% and 88% POE,
respectively

= +CN3
CN2

0.42405 0.00576CN2
R2 = 0.715

=CN1
CN2

2.42081 0.01421CN2
R2 = 0.760
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