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A B S T R A C T

Soil legacy data is ubiquitous and usually contains routine soil analysis information. In Iran, like most places,
legacy soil data constitutes genetic horizon soil information recorded from excavated soil profiles. Describing
and sampling from each genetic horizon is assumed to be heterogeneous from site to site. Digital soil mapping
(DSM) using observed data is valuable because it provides a means to exploit the available information together
with leveraging commonly available information by way of environmental covariates. It creates a much more
detailed view of soil at the landscape scale. The purpose of this paper is to model and map the spatial distribution
of nitrogen, phosphorous and boron at four standardized depths: 0–15, 15–30, 30–60, 60–100 cm, in an area of
7300 ha in the north west of Iran, and compare different model types. To circumvent the issue of heterogeneous
soil depth observations from site to site, mass-preserving soil depth function splines were used to harmonise the
soil profile observed data to the aforementioned standard depths. This facilitated the spatial modelling of each of
the target variables for each standard depth with the aim of creating digital soil maps. Twenty-three covariates
were extracted from a publically available digital elevation model (DEM) as well as freely available Landsat 8
ETM+ imagery. The DEM-derivative covariates used in this study were divided into three main categories: i)
Morphometry; ii) hydrology; and iii) lighting visibility. Both Random Forest and Cubist were assessed as can-
didate models for predicting each target variable. The results showed that Cubist was the most accurate method.
Terrain attributes play an important role in estimating N, P, and B, while optical images do not have significant
role. The most important findings of this paper in terms of environmental hazards are that the inundated regions
in the west part of the study area are susceptible to boron contamination, providing future guidance for re-
mediation.

1. Introduction

Soil nitrogen (N) and phosphorus (P) are important macronutrients
which can limit or co-limit plant growth (Li et al., 2016). Soil boron (B)
is also important to plant development as a micronutrient (Tariq and
Mott, 2007). Boron has also been linked to various toxicological issues
too as shown in the work of Assadpour et al. (2017) in north-western
Iran. Understanding the spatial variation of these nutrients will result in
better management plans and assessment of potential environmental
hazards.

Following the earlier work on soil forming factors (Jenny, 1941),
digital soil mapping (DSM) is invaluable to understanding the spatial
variation of soil properties as it provides an empirical framework for
soil type or attribute mapping based on spatial data related and pseudo-
related to the soil forming factors using numerical functions or models

(McBratney et al., 2003). The State-of-the-Art of DSM is well under-
stood in Iran. However, it has been focused only on a relatively small
number of readily measured soil properties such as soil organic carbon
and clay contents (Taghizadeh-Mehrjardi et al., 2016). As management
parameters with strong spatial dependence (patchy distribution) will be
more readily managed and an accurate site-specific fertilization
schemes for precision farming more easily developed (Lopez-Granados
et al., 2002), there is a requirement of thematic digital maps related to
some macro- and micronutrients e.g. N, P. and B.

Digital soil mapping employs mathematical and statistical models
which combine information from soil observations with information
contained in environmental variables and remote sensing images to
produce predictions of properties over a large scale at a defined re-
solution (Dobos et al., 2006). Numerous prediction methods have been
utilized to find linear and non-linear relationships between soil organic
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carbon and ancillary data such as from a digital elevation model (DEM)
and Landsat imagery (Hengl et al., 2015; Minasny et al., 2013; Malone
et al., 2009; Mora-Vallejo et al., 2008).

Recent developments in DSM have highlighted the utility of
methods to map the vertical and lateral variability of soils (Malone
et al., 2017; Taghizadeh-Mehrjardi et al., 2016). The methodology is
loosely termed pseudo 3-dimensional soil mapping. The digital soil
information that is achieved from this 3-D soil mapping provides an
ability like never before to properly represent soil within all environ-
mental modelling and management endeavours. Whatever the termi-
nology, despite some successes in DSM (Pahlavan-Rad et al., 2014;
Taghizadeh-Mehrjardi et al., 2014) – albeit in relatively small mapping
extents - the application of 3-D DSM methods has not sufficiently been
examined in detail within Iran. As described in Malone et al. (2017),
there are several methodologies that are potentially at hand. One
method is to combine soil depth functions with spatial modelling of
continuous soil attributes as exemplified in Malone et al. (2009). This is
a two-step procedure and first involving the fitting of splines, followed
by spatial modelling of the target variable for each standardized depth.
More recently, one-step approaches such as that in Orton et al. (2016)
and Poggio and Gimona (2014) have been proposed. While the one-step
approaches are more mathematically concise and appealing to some for
that matter, the two-step approach developed by Malone et al. (2009)
has endured because of its flexible nature. For example, the values re-
trieved from a fitted spline to soil data at given standard depth are both
soil attribute information and parameters of the spline. The spline fitted
data at given depths represent just a different reality of the observed
data, and can also be used to retrieve those actual observations when
the predicted values are used as inputs in the spline model. Further-
more, the two-step approach does not limit the soil modeller to using
linear-based spatial models, meaning that the whole gamut of data
mining and machine learning approaches can be considered (Malone
et al., 2018).

This research aims to investigate the spatial variation of N, P and B
in a study area with north-western Iran using the combination of spline
depth functions coupled with different data mining techniques for a
comparative analysis. These models include the Random Forest and
Cubist data mining algorithms. The created maps may help us to assess
the occurred environmental hazard across the study area.

2. Material and methods

2.1. Study area

This study was focussed upon 7300 ha extent of land in East
Azerbaijan Province, Iran (Fig. 1). There are about 20 villages as well as
a permanent river namely the Ahar chay within the study area.

The study area is represented by different kinds of land uses (e.g.
cereal crops and apple orchards) as well as different lithology (e.g.
limestone, old alluvium and volcanic-sedimentary) (Anonymous,
2012). It lies between the latitudes of 38° 24′ 04″ and 38° 28′ 33″ North
and the longitudes of 47° 00′ 00″ and 47° 07′ 43″ East. The climate is
semiarid. Annual rainfall and temperatures on average are 295mm and
11 °C, respectively. Average annual maximum and minimum tempera-
tures are 16.3 °C and 5.3 °C which was reported for July and February,
respectively. The humidity index is 0.45. The humidity index was cal-
culated with CDBm+, a software package within MicroLEIS DSS
(Shahbazi and Jafarzadeh, 2010). The elevation varies from 1281 to
1683m a.s.l. The main physiographical units in the study area are de-
scribed as flat, alluvial plains, hillsides and mountains (Shahbazi et al.,
2014).

2.2. Environmental covariates

Due to variation of elevation and parent material and even land
uses, spatial distribution of N, P and B is likely to be estimated as some

function of given environmental and land cover data. For this purpose,
a DEM and Landsat imagery spectral data were used in this study.

All covariates used in this study were aligned to the same grid cell
resolution and extent. Here, a 30m grid was used and alignment of
grids was performed using cubic spline resampling where needed. The
coordinate reference system used in this study was WGS1984 UTM
Zone 38.

2.2.1. DEM derived covariates
Derivatives of the DEM (described below) were estimated using

various functions made available in both ArcGIS (ESRI, 2011) and
SAGA GIS (Conrad et al., 2015). The flowchart of the procedures is
presented in (Fig. 2).

Terrain analysis is an integral component of DSM (McKenzie et al.,
2000). Using the available DEM, we generated a number of derivatives
to which were classified under three broad categories. 1) Morphometry:
with derivative including slope, aspect, and curvature (plan and pro-
file). 2) Hydrology: which include the derivatives catchment area, multi
resolution indices of valley bottom flatness (MrVBF) and ridge top
flatness (MrRTF). 3) Lighting visibility: potential incoming solar ra-
diation. DEM derivatives were classified. Slope, aspect and curvature
are local morphometric terrain parameters. Plan and profile curvature
are also horizontal and vertical components of curvature (Tarboton,
1997). Modified catchment area describes width and specific catchment
area (Hengl and Reuter, 2008). Multi resolution indices of valley
bottom flatness (MrVBF) and ridge top flatness (MrRTF) are two mor-
phometric parameters that as the names suggest can identify areas of
flatness at different scales in valley bottoms and ridge areas respectively
(Gallant and Dowling, 2003). Specifically, MrVBF is a topographic
index designed to identify areas of deposited material at a range of
scales based on the observations that valley bottoms are low and flat
relative to their surroundings and that large valley bottoms are flatter
than smaller ones. Zero values indicate erosional terrain with values 1
and larger indicating progressively larger areas of deposition. With
slight modification to the MrVBF algorithm, the same analysis can be
performed for ridge top areas to estimate MrRTF. Potential incoming
solar radiation is a topoclimatic variable that is used as a parameter for
evaluating the positional aspect effect in a landscape. Derived from the
DEM, this parameter is evaluated over a temporal range of dates, taking
into account sun position, location and sunrise and sunset times (Wilson
and Gallant, 2000).

2.2.2. Covariates derived by Landsat 8 ETM+

Landsat 8 ETM+ imagery acquired on July 10, 2013 was selected for
further analysis in this project. This scene was selected due to minimal
cloud coverage and maximum soil surface exposure. A brief description
of auxiliary data derived by Landsat 8 imagery is summarized in
Table 1.

Landsat 8 spectral bands 2 to 7 were selected as six individual bands
with a collective wavelength range between 0.452 and 2.294 μm (blue,
green, red, near infrared, shortwave infrared one and two). Clay index
(Breunig et al., 2008) and Salinity Ratio (Taylor et al., 1996) were
calculated to represent parent material and soil factors across the study
area. Normalized difference vegetation index (NDVI) was also calcu-
lated. NDVI ranges between −1.0 and 1.0, and mostly represents the
saturation of green for higher values and corresponds to actively
growing vegetation. Any negative values are mainly generated from
clouds, water and snow, while values near zero are mainly generated
from rock and bare soil. RVI (ratio vegetation index), and MSAVI2
(modified soil adjusted vegetation index) were also calculated to re-
present the vegetation and soil situation at the study area (Qi et al.,
1994; Major et al., 1990). The index of MSAVI2 minimises the effect of
bare soil on the SAVI. Fig. 3 represents some calculated auxiliary rasters
for the study area.
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