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We review a geometric approach to classification and examination of quantum correlations

in composite systems. Since quantum information tasks are usually achieved by manipulating

spin and alike systems or, in general, systems with a finite number of energy levels, classification

problems are usually treated in frames of linear algebra. We proposed to shift the attention to

a geometric description. Treating consistently quantum states as points of a projective space

rather than as vectors in a Hilbert space we were able to apply powerful methods of differential,

symplectic and algebraic geometry to attack the problem of equivalence of states with respect

to the strength of correlations, or, in other words, to classify them from this point of view. Such

classifications are interpreted as an identification of states with ‘the same correlations properties’,

i.e. ones that can be used for the same information purposes, or, from yet another point of view,

states that can be mutually transformed one to another by specific, experimentally accessible

operations. It is clear that the latter characterization answers the fundamental question ‘what can

be transformed into what via available means?’. Exactly such an interpretation, i.e. in terms of

mutual transformability, can be clearly formulated in terms of actions of specific groups on the

space of states and is the starting point for the proposed methods.
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1. Introduction

Quantum entanglement — a direct consequence of linearity of quantum mechan-
ics and the superposition principle — is one of the most intriguing phenomena
distinguishing the quantum and classical description of physical systems. Quantum
correlated (e.g. entangled) states of composite systems possess features unknown
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in the classical world, like the seemingly paradoxical nonlocal properties exhibited
by the famous Einstein–Podolsky–Rosen analysis of completeness of the quantum
theory. Recently, with the development of quantum information theory they came to
prominence as the main resource for several applications aiming at speeding up and
making more secure information transfers (see, e.g. [1]). A novel kind of quantum
correlations, called quantum discord, different from entanglement, but also absent
in the macroscopic world, was discovered [2, 3] adding one more element to “the
mysteries of quantum mechanics” as seen from the classical point of view.

Although typically a quantum system, such as, for instance, a harmonic oscillator
or a hydrogen atom, is described in terms of an infinite-dimensional Hilbert space,
for most quantum-information applications the restriction to finite dimensions suffices,
since usually the active role in information processing is played only by spin degrees
of freedom or only few energy levels are excited during the evolution.

From the mathematical point of view such finite-dimensional quantum mechanics
seems to mount a smaller challenge than in the infinite-dimensional case—the tool
of choice here is linear algebra rather than functional analysis. Nevertheless, the
understanding of correlations in multipartite finite-dimensional quantum systems is
still incomplete, both for systems of distinguishable particles [4] as well as for the
ones consisting of nondistinguishable particles like bosons and fermions [5–8].

The statistical interpretation of quantum mechanics disturbs a bit the simple linear-
algebraic approach to quantum mechanics—vectors corresponding to a state (elements
of a finite-dimensional Hilbert space H) should be of unit norm. Obviously, physicists
are accustomed to cope with this problem in a natural way by “normalizing the vector
and neglecting the global phase”. Nevertheless, it is often convenient to implement
this prescription by adopting a suitable mathematical structure, the projective space
P(H), already from the start1. The projective space is obtained from the original
Hilbert space H by identifying vectors2 differing by a scalar, complex, nonzero
factor, |ψ〉 ∼= c|ψ〉. We will denote elements (points) of P(H) by u, v, x, etc. and,
if we want to identify a particular equivalence class of the vector |ψ〉, by [ψ], etc.

Obviously, both approaches, the linear-algebraic (plus normalization and neglecting
the global phase) picture and the projective one are equivalent. Following the former,
we loose linearity, so which advantages we could expect instead? We answered this
question in our paper [9], where we propose, by working in the projective space,
to apply completely new (in this context) techniques to analyze the phenomenon of
entanglement. The approach has given a deeper insight into the unexpectedly rich
geometric structure of the space of states and enabled the use of recently developed
advanced methods of complex differential, algebraic and symplectic geometry.

The most efficient characterization of quantum correlations is achieved by iden-
tifying states that are ‘equally correlated’ or, in other words, states that can be

1Equivalently, it is possible to incorporate the redundancy of the global phase by identifying pure states

with orthogonal projectors onto one-dimensional subspaces of H. However, for the sake of convenience, in

this exposition we decided to treat pure states as elements of P(H).
2We will use exchangeably the Dirac notation, |ψ〉, etc., and the short one ψ etc. for elements (vectors)

of H.
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