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A B S T R A C T

The radiation and diffraction problems for an array of submerged circular cylinders with vertical axes of re-
volution are formulated exactly to first order in the frequency domain. Matched eigenfunction expansions and a
transform matrix method are used to solve the scattering problem for an arbitrary array using a truncated system
of matrix equations. For a single shallowly submerged cylinder, the model is used to characterise the occurrence
of resonances in the region of fluid above the cylinder moving in heave and surge motion. The method is then
applied to a square array of four cylinders, and the effect of array interactions demonstrated. It is found that fluid
resonances above the cylinder are still important, but are modified by multiple scattering. Finally, the mean
vertical drift force is calculated from the first order solution by direct pressure integration over the body surface.

1. Introduction

Some wave energy devices and offshore structures can be modelled
as submerged oscillating circular cylinders with vertical axes of re-
volution. This paper presents a semi-analytical method to model an
array of such structures using linear theory, in which the multiple body
scattering problem is solved by the use of a transform matrix and a
system of matrix equations. The use of such a transform matrix method
requires only that the diffraction and radiation problem be formulated
exactly for a single cylinder; the complete array solution can then be
solved simultaneously and exactly. This type of model can be used to
analyse the hydrodynamics of large arrays and offers some advantages
over traditional boundary element methods when changing the cylinder
or array geometry as re-meshing is not required.
This work is partly motivated by the wave energy device under

development by Carnegie Clean Energy, the CETO wave energy con-
verter. This device consists of a shallowly submerged cylinder tethered
to the sea floor, see Fig. 1. The CETO device may be installed in arrays
with relatively small spacing; we must therefore consider the effects of
device interactions when modelling the hydrodynamics of such an array
as this may be important for design of the system for optimum power
production (e.g. Borgarino et al. [1]).
A submerged oscillating cylinder has significantly altered hydro-

dynamic properties compared to the same structure floating at the
surface due to the layer of fluid above the cylinder. The phenomenon of
negative added mass can be observed for very shallow submergences
and resonances in the region of fluid above the cylinder can produce
large peaks in the damping, as observed by Newman et al. [3] and

McIver and Evans [4] for the 2-dimensional and 3-dimensional radia-
tion problems respectively and Martin and Farina [5] for an oscillating
submerged plate.
Linear modelling of diffraction around cylinders under the influence

of waves has been the focus of much previous work as many marine
structures are (at least approximately) cylindrical, for example, the legs
of a tension-leg or semi-submersible oil and gas platform. The linear
diffraction problem for a single surface piercing truncated cylinder was
solved by Garrett [6] using an eigenfunction expansion method and
Yeung [7] solved the complementary radiation problems in surge,
heave and pitch. The radiation and diffraction problems for a single
submerged cylinder were solved by Jiang et al. [8,9].
The array diffraction problem has also been extensively studied.

Kagemoto and Yue [10] combined features of the matrix method of
Spring and Monkmeyer [11] and Simon [12], and the multiple scat-
tering technique of Twersky [13] and Ohkusu [14] to solve the com-
plete scattering problem for an array of arbitrary bodies. They re-
presented the scattered wavefield around each body as a summation of
cylindrical waves with undetermined amplitudes. A set of linear
equations were derived to satisfy the diffraction characteristics of all
the bodies. This system was then solved simultaneously for all of the
unknown amplitude coefficients. The solution is in principle exact
(within the context of linearised theory).
Linton and Evans [15] solved the diffraction problem for an array of

N bottom mounted cylinders using the method of Spring and Mon-
kmeyer [11], and Kim [16] extended this to the complementary ra-
diation problem. Yilmaz and Incecik [17] applied the interaction theory
of Kagemoto and Yue [10] to the diffraction problem for truncated
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cylinders and Yilmaz [18] calculated the added mass and damping of an
array of bodies oscillating as one. The present work is based on the
methods outlined by Siddorn and Eatock Taylor [19], who investigated
the wave excitation and response of surface-piercing truncated cylin-
ders which are free to oscillate independently. They used the theory of
Kagemoto and Yue [10], and developed an extension of this for the full
radiation problem. In this work we adapt the method of Siddorn and
Eatock Taylor [19] to consider submerged cylinders and produce results
for a simple array. Array problems for different structures continue to
be of interest – consider, for example, Chatjigeorgiou and Katsardi [20].
It is well known that linear solutions provide the basis for calcu-

lating mean drift loads in regular waves, which represent a simple, but
sometimes important, non-linear effect. The second order mean drift
forces on a two dimensional submerged horizontal cylinder were ob-
tained by Ogilvie [21] using the first order solution and integrating the
pressure over the surface. Lee and Newman [22] derived expressions for
the vertical drift force on a submerged body assuming it is geome-
trically slender with respect to the body length, wavelength and sub-
mergence and using Kochin functions which avoid the need to de-
termine the pressure distribution on the body surface. Mavrakos [23]
solved for the mean vertical drift forces on axisymmetric bodies using
conservation of momentum within a control volume. Here we solve for
the second order mean vertical drift force by numerical pressure in-
tegration over the body surface as an example of further use of the
model outputs in calculating hydrodynamic forces.
In Section 2 we present the diffraction and radiation solutions for a

single submerged circular cylinder, followed by the transform matrix
method to solve the system for an arbitrary array of cylinders of varying
submergence, radius and thickness. In Section 3 the model is validated
through comparison to the Hydrostar boundary element (BEM) soft-
ware. Some limitations of the model and resonant behaviours above the
cylinder are discussed, followed by array damping and exciting force
results for a simple four cylinder array.

2. Potential flow solutions for a submerged cylinder

2.1. Preliminaries

We use linear potential flow theory; the wave amplitudes and body
motions are small compared to the wavelength, device size and sub-
mergence. We use a velocity potential, denoted Φ, throughout the fluid
that varies sinusoidally with frequency ω. The potential can be written
in cylindrical coordinates as a complex Fourier series:
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Fig. 2 defines the coordinate system, t is time and ϕ is the complex time-
invariant velocity potential. The angle invariant potential for each
Fourier mode f is denoted χf. The fluid is divided into three regions, the
core regions above and below the cylinder and an exterior region. The
cylinder radius is a, the water depth h, the distance from the free sur-
face to the top of the cylinder is submergence s and the clearance be-
tween the sea floor and the bottom of the cylinder is c.
The velocity potential must satisfy the Laplace equation in the fluid:
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and the linearised boundary conditions on the seabed, free surface and
cylinder surface (S) respectively:
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where un is the normal component of the complex amplitude of the
cylinder velocity at any point on its surface.
The dispersion relation arising from the free surface boundary

condition (4) in finite depth is given by:
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The positive real solution, k0, is the wavenumber of the propagating
mode. The negative imaginary solutions, km for m=1, 2, … are the
wavenumbers of the evanescent modes. The evanescent waves are non-
propagating modes, which decay exponentially with distance from the
cylinder and as such cannot transfer energy into the far field.

Fig. 1. Carnegie Clean Energy CETO wave energy devices. From [2].

Fig. 2. Definition sketch.

G. McCauley et al. Applied Ocean Research 81 (2018) 1–14

2



Download English Version:

https://daneshyari.com/en/article/11015686

Download Persian Version:

https://daneshyari.com/article/11015686

Daneshyari.com

https://daneshyari.com/en/article/11015686
https://daneshyari.com/article/11015686
https://daneshyari.com

