Contents lists available at ScienceDirect

Cryogenics

journal homepage: www.elsevier.com/locate/cryogenics

Research paper

Development and performance test of a miniature movable mixedrefrigerant liquid nitrogen generator

H.C. Wang^{a,b}, H. Guo^{a,*}, Y.X. Zhao^a, G.F. Chen^a, M.Q. Gong^{a,b,**}

^a Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 ^b University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Keywords: Liquid nitrogen Mixed-refrigerant Experiment Prototype Air separation

ABSTRACT

In order to cover long-term but small quantity liquid nitrogen requirements of laboratory or field users, a miniature movable mixed-refrigerant liquid nitrogen generator (MRLN) was developed and tested here, based on a precooled mixed-refrigerant J-T (MRJT) refrigerator. With the full air-cooled, skid-mounted structure, this MRLN was built utilizing off-the-shelf refrigeration components like commercial single-stage oil-lubricated compressors to reduce construction cost greatly. Bottled pure N₂, pressure swing adsorption (PSA) unit and mini cryogenic rectification column could be employed to supply N₂ in different operation modes respectively. In pure N₂ mode, N₂ was directly liquefied by the MRJT refrigerator. With feed N₂ at 0.8 MPa, the specific power consumption (*SPC*) was 1.79 kWh L⁻¹, and figure of merit (*FOM*) was 6.27%. The estimated *SPC* in PSA mode was 2.68 kWh L⁻¹. For column mode, the *SPC* was 4.59 kWh L⁻¹, with *FOM* of 3.38%. A closed N₂ cycle could convey cooling capacity between flammable refrigerant and air. This MRLN could be a convenient and low-costing choice for some liquid nitrogen users.

1. Introduction

Liquid nitrogen (LN_2) is extensively used in cryogenic engineering. However, the procurement and preservation of LN_2 could be relative inconvenient in field environment that is far away from normal LN_2 supply facilities. It might also be uneconomical for laboratories to buy LN_2 with long-term small quantity requirement. Miniature LN_2 generators could be satisfying solutions under above conditions.

In miniature LN_2 generators, different cooling sources could be employed for gas liquefaction, such as helium regenerative cryocoolers (Stirling, G-M, etc.), feed gas expansion processes, and mixed-refrigerant J-T (MRJT) refrigerators. Except for bottled pure N_2 , feed N_2 could be separated from air by cryogenic air separation column, pressure swing adsorption (PSA) unit or membrane separation unit [1,2]. PSA and membrane separation units are satisfying for miniature systems for simple configurations and no cryogenic component.

Many commercial miniature LN_2 generators are the combination of PSA air separation units [3–7] and Stirling [3,4] or G-M [5–7] cryocoolers. N_2 is separated from compressed air by PSA units at ambient temperature and liquefied by the cold head of cryocoolers [3–7]. These LN_2 generators could be very compact due to the small size of cryocoolers. Their startup time is also short. For example, the G-M cryocooler for [6] could reach 20 K in 35 min with no load [8]. However, the construction cost of helium regenerative cryocoolers might be higher than the MRJT refrigerators with similar cooling capacities near liquid nitrogen temperature [9].

Feed gas expansion processes are mainly combined with air separation columns in large cryogenic air separation plants, which are also the basic method for industrial LN_2 production [2]. However, miniature gas expansion type LN_2 generators with LN_2 output less than $10 L h^{-1}$ are not prevalently manufactured. The gas expansion type miniature LN_2 generators in [10–12] are based on modified Claude or Kapitza cycles with mini turbine expanders, whose configurations are simple, free of external refrigerators. A cryogenic air separation column could be directly installed after the expansion liquefier [11]. However, the specific power consumptions (*SPC*) of these LN_2 generators are higher than those in G-M + PSA LN_2 generators and large scale air separation plants.

In the temperature zone of low pressure air and N_2 liquefaction (such as 100.4 K of N_2 at 0.8 MPa, which is a typical operating pressure for small commercial air compressors), MRJT refrigerators have advantages such as satisfying efficiency, favorable volumetric cooling capacity, no cryogenic moving component and low construction cost [13–15]. Similar with the MRC processes in natural gas liquefaction

https://doi.org/10.1016/j.cryogenics.2018.09.013

Received 17 July 2018; Received in revised form 27 September 2018; Accepted 27 September 2018 Available online 28 September 2018

0011-2275/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

^{**} Corresponding author at: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. *E-mail addresses:* guohao0010@163.com (H. Guo), gongmq@mail.ipc.ac.cn (M.Q. Gong).

Nomenclature		Subscrip	Subscripts	
BOG	boil-off gas	AC	after cooler	
Ε	exergy flow (kW)	air	open air cycle (feed air)	
е	specific exergy (kJ kg $^{-1}$)	AJT	after throttling	
FOM	figure of merit (kW kW ^{-1} , %)	BJT	before throttling	
$g_{ m v}$	volumetric flow rate $(m^3 h^{-1}, L h^{-1})$	с	cooling capacity	
HC	hydrocarbon	CP	compressor	
LN_2	liquid nitrogen	HX1	precooling multi-flow heat exchanger	
т	mass flow rate (g s ^{-1})	HX2	middle (recuperative) multi-flow heat exchanger	
MRJT	mixed-refrigerant Joule-Thomson (cycle)	HX3	cold (recuperative) multi-flow heat exchanger	
MRLN	mixed-refrigerant liquid nitrogen generator	HX4	air liquefaction multi-flow heat exchanger	
р	pressure (MPa)	h	high pressure (warm) stream	
$p_{ m h}$	compressor discharge pressure (MPa)	in	inlet status	
p_1	compressor suction pressure (MPa)	JT	JT element	
RO_2	oxygen-enriched air	1	low pressure (cold) stream	
SPC	specific power consumption (kWh L^{-1})	main	main cycle	
Т	temperature (K)	N2	open nitrogen cycle, feed nitrogen	
T_0	ambient temperature (K)	N2C	closed nitrogen cycle	
W	power consumption (W, kW)	out	outlet status	
		prec	precooling cycle	
Greek letters		RO2	oxygen enriched air	
		sep	separation	
η	exergy efficiency (kW kW $^{-1}$, %)	0	ambient	

industry, N₂ is liquefied in the recuperative heat exchanger by the low pressure cold refrigerant stream. Thermodynamic analysis of several mixed-refrigerant type nitrogen liquefaction processes are conducted in [16,17], focusing on high pressure (2.0–4.0 MPa) and low pressure (near 0.8 MPa) N₂ sources, respectively. It is indicated that MRJT refrigeration processes could be cooling sources for N₂ liquefaction. However, the prototype construction and experimental investigation of mixed-refrigerant LN₂ generators (MRLN) are rarely reported,

especially for low pressure N₂ liquefaction. Some MRLN prototypes are developed with two-stage mixed-refrigerant compressors [18] and high pressure N₂ sources (≥ 2.0 MPa) [18,19]. Although the *SPC* could be relatively low, the system construction cost might be higher. Membrane units are used in [18,19] instead of cryogenic air separation columns. Little [20] developed a low-costing commercial miniature MRLN based on an air-cooled auto-cascade MRJT refrigerator driven by an oil-lubricated compressor. Feed N₂ is supplied by a PSA unit and a small air

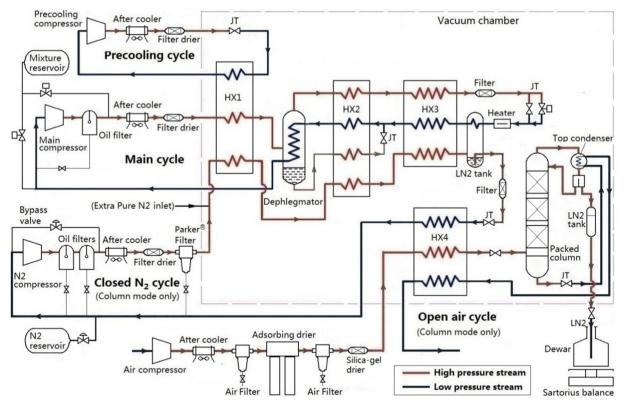


Fig. 1. Diagram of MRLN prototype (whole system, using air separation column).

Download English Version:

https://daneshyari.com/en/article/11015764

Download Persian Version:

https://daneshyari.com/article/11015764

Daneshyari.com