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In the review we briefly analyze the state-of-art in the theory of flexoelectric phenomena and analyze how sig-
nificantly the flexoelectric coupling can change the polar order parameter distribution in different ferroics and
liquid crystals. The special attention in paid to the appearance of the spatially modulated phases induced by
the flexocoupling in condensed and soft matter. Results of theoretical modeling performed in the framework
of the Landau-Ginzburg-Devonshire formalism revealed that the general feature, inherent to both ferroics and
liquid crystals, is the appearance of the spatially-modulated phases is taking place with increasing of the
flexocoupling strength. We'd like to underline that theoretical and experimental study of flexoelectricity and re-
lated phenomena in nanosized and bulk ferroics, liquid crystals and relatedmaterials are very important for their
advanced applications in nanoelectronics, memory devices and liquid crystals displays.

© 2018 Elsevier B.V. All rights reserved.

Keywords:
Ferroic
Flexoelectricity
Liquid crystal
Flexocoupling tensor
Flexoeffect
Bended molecule

1. Flexoelectric effect in ferroics

The flexoelectric effect, first predicted theoretically by Mashkevich
and Tolpygo [1] in 1957, exists in any matter (condensed or soft one),
making the effect universal [2,3,4,5,6]. The static flexoelectric effect is
an electric polarization generated in solids by a strain gradient and
vice versa, whereas broadly known piezoelectricity assume homoge-
neous strain conditions. The induced strain is linearly proportional to
the polarization gradient and, and the proportionality coefficients f,
which are the components of the flexocoupling tensor, are fundamen-
tally quite small, f~e/a, where e and a are respectively electronic charge
and lattice constant [7]. Rigorously, the direct and converse static
flexoelectric coupling constants fijkl were described with a fourth-rank
tensor, as [2–6]:

Pflexo
i ¼ f ijkl

∂ujk

∂xl
uij ¼ f ijkl

∂Pflexo
k

∂xl
ð1Þ

In these expressions ujk and Pi
flexo are the tensor strain and polariza-

tion vector components, respectively. The physical picture of the
flexoelectric effect in solids is shown in Figs. 1(a)–(c). When the geo-
metric centers of positive and negative charges coincide, the net dipole
moment of the unit cell is zero, and corresponding unstrained 2D struc-
ture of elementary charges is shown in Fig. 1(a). When each unit cell is
uniformly tensiled and the tension gradually varies from one cell to an-
other, the cations are displaced from the centre of the deformed unit cell
and the strain gradient induces an uncompensated dipole moment via
the flexocouplingmechanism [Fig. 1(b)]. The inhomogeneous deforma-
tion of the unit cell also produces a net dipole moment via the
flexocoupling effect [Fig. 1(c)].

Unlike piezoelectricity, which exists only in noncentrosymmetric
systems of 20 point groups, flexoelectricity occurs in all 32 crystalline
point groups, because the strain gradients break inversion symmetry.
Owing to the universal nature, flexoelectricity permanently attracts
broad scientific interest, but its application potential in macro-
materials is fundamentally limited due to the small strength f.

The flexoelectricity impact is of great importance in nanosized
ferroics [8], for which the pronounced elastic strain and stress gradi-
ents are omnipresent near the surfaces, in thin films [9,10,11], at the
topological defects, such as domain walls, and near the interfaces
[10, 12,13,14]. Owing to the surface and interface effects, the
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flexoelectric effect appears spontaneously near the surface of thin
films and nanoparticles [15]; everywhere, where the electric polari-
zation distribution is inhomogeneous. Notably, that the influence of
flexoelectricity is important not only in thin ferroic films and nano-
particles, but also in their micro- and nanograined ceramics [16,17],
where it should become competitive with surface piezoelectricity [18].
Despite the great importance of flexoelectricity, its tensorial compo-
nents strength, estimated by Kogan [7] in early 1963, remained poorly
known for most of ferroics [19], except for the experimental measure-
ments [20,21,22] and ab initio calculations [23,24] of some components
for ferroelectric perovskites, and fundamental limits on the coefficients
upper bonds [25].

The direct and converse static flexoelectric effects, which lead to the
appearance of polarization due to the strain gradient and vice versa [1],
exist in a ferroic of arbitrary symmetry [8, 5, 6]. Corresponding tensorial

Lifshitz invariant f klij2 ðPi
∂ukl
∂x j

−ukl
∂Pi
∂x j

Þshould be included to the free energy

functional of all those ferroics, for which the polarization component
(s) Pi is a primary order parameter. Using the way it was shown that
the flexocoupling term in the form of Lifshitz invariant can induce ther-
modynamically stable incommensurate spatially modulated phase
(SMP) in the temperature range between the disordered parent phase
(PP) and long-range ordered homogeneous phase (HP) in many
ferroics [26,27,28,29]. Note that the static flexoelectric effect is omni-
present from the symmetry theory considerations, and the earliest [1]
and recent [23, 24, 30] microscopic calculations give nonzero values of
flexoelectric coefficients fklij. Also it becomes possible to define the static
flexoelectric coefficients from direct experiments [21, 22, 31], as well as
from the fitting of soft phonon spectra in ferroelectrics (see e.g. [32] and
refs. therein).

Notably, that chirality, being the property of an object to be incom-
patible with its mirror image, can be strongly affected by the
flexoelectric coupling. In particular, bichiral structure of ferroelectric
domain walls can be driven by flexoelectric coupling [33] and chiral-
achiral phase transitions at the walls becomes possible [34].

From considerations of the symmetry theory stating that all terms
and invariants, which existence does not violate the symmetry of the
system, are allowed, Kvasov and Tagantsev et al. [35] predicted the ex-

istence of a cross-term in the kinetic energy,Mij
∂Pi
∂t

∂U j

∂t , and named it dy-
namicflexoelectric effect (see reviews [3, 4] and refs therein). HereMij is
the strength of dynamic flexoelectric coupling and Ui is elastic displace-
ment. At present the situation with the magnitudes Mij of dynamic
flexoeffect is more complex and controversial that for the static one, be-
cause there are microscopic theories in which the effect is absent [36].
However, the Stengel result [36] contradicts to Kvasov and Tagantsev
result [35], who evaluated the strength of the dynamic flexoelectric ef-
fect in SrTiO3 frommicroscopic calculations and it appeared comparable
to that of the static bulk flexoelectric effect.More discussion of the prob-
lem can be found in Refs [32, 37].

2. Impact of the flexocoupling on phonon spectra and spatially
modulated phases in ferroics

Investigation of dynamic characteristics of phase transitions in
ferroics, such as their soft phonon spectra, attracts great attention,
being the source of valuable information for fundamental physical re-
search and advanced applications [38]. For ferroelectrics the frequency
ωTO of transverse optic (TO) soft mode depends on temperature T, at
that ωTO(TC) = 0 at transition temperature T= TC [39].

Basic experimental methods, which contain information about the
soft modes and spatial modulation of the order parameter in ferroics
(such as antiferroelectrics, proper and incipient ferroelectrics) are di-
electric measurements [40], inelastic neutron scattering [39,
41,42,43,44,45], X-ray [26, 46,47,48], Raman [49] and Brillouin [46, 47,
50,51,52,53] scatterings and ultrasonic pulse-echo method [50, 52]
allowing hypersound spectroscopic measurements. Scattering experi-
ments proved that not only the TOmode softens substantially with de-
creasing temperature to freeze out at TC in ferroics (such as ferroelectric
perovskites), but also finite wave vector anomalies appear in the trans-
verse acoustic (TA) mode for structural phase transitions [54,55,56].

Using the Landau-Ginzburg-Devonshire (LGD) theory [57,58,59],
Morozovska et al. derived analytical expressions for the soft phonon
modes frequencyω(k) dependence on the wave vector k and examined
the conditions of the soft acoustic TA-modes appearance in ferroelec-
trics depending on the magnitude of the flexoelectric coefficient f and
temperature T. If the magnitude of the flexoelectric coefficient f is
equal to the temperature-dependent critical value fcr(T) at the temper-
ature T= TIC, |f| = fcr(TIC), then the TA-mode frequency tends to zero at
k → k0

cr according to the linear law ω(k → k0
cr) ∼ k − k0

cr and, simulta-
neously, the ferroelectric polarization becomes spatially modulated.
When the magnitude of the flexocoefficient is more than the critical
value |f| N fcr(T) in a temperature range TC b T b TIC lower than Curie
temperature TC, corresponding to the incommensurate phase, the TА-
mode becomes zero for two wave vectors k = k1, 2

cr according to the

squire root law, ωðk→kcr1;2Þ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkcr1;2−kj

q
, and does not exist in the range

of wave vectors k1cr b k b k2
cr, where the incommensuratemodulation ex-

ists. At fixed flexocoefficient f the transition into the incommensurate
phase can appear at the temperature TIC that depends on f. In addition
we predicted the appearance of the “rippled” flexocoupling-induced in-
commensurate phase in the ferroicswith initially commensurate phases
only. The available experimental data on hypersound velocity in the
solid solutions Sn2P2(S,Se)6 [50] and neutron scattering in organic ferro-
electric (CH3)3NCH2COO·CaCl2·2H2O [44] are in a semi-quantitative
agreement with the theoretical results [57–59]. For improvement and
for quantification of the theory, it is necessary tomeasure the frequency
dependence of the TA-modes in a uniaxial ferroelectric with a spatially
modulated phase in the temperature interval near its appearance.

3. General formulation of Landau-Ginzburg-Devonshire formalism

LGD expansion of bulk (FV) part of Helmholtz free energy F on the
order parameter η and strain tensor components uij has the form:

Fv ¼
Z
v

d3r

aij Tð Þ
2

ηiη j þ
aijkl Tð Þ

4
ηiη jηkηl þ

aijklmn

6
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2
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Coefficients aij(T) explicitly depend on temperature T; aijkl is
regarded temperature independent, aijklmn is a temperature indepen-
dent and positively defined. Constants gijkl and vijklmn determine magni-
tude of the gradient energy. Higher gradient tensors wijkl and hijk are
positively defined, qijkl is the bulk striction coefficients; cijkl are

Fig. 1. Origin of flexoelectric effect in solids. (a) Unstrained 2D structure of elementary
charges with zero net dipole moment. (b) Each unit cell is uniformly tensiled, but the
tension gradually varies from one cell to another. An uncompensated dipole moment
appears via the flexocoupling mechanism. (c) An inhomogeneous deformation of the
unit cell produces a net dipole moment via the flexocoupling effect.
(Adapted from the papers [5, 11–13]).
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