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Abstract

We establish the Lifschitz-type singularity around the bottom of the spectrum for the integrated density
of states for a class of subordinate Brownian motions in presence of the nonnegative Poissonian random
potentials, possibly of infinite range, on the Sierpiński gasket. We also study the long-time behaviour for
the corresponding averaged Feynman–Kac functionals.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The integrated density of states is one of central objects in the physics of large-volume
systems, especially systems with in-built randomness. The randomness can come from the
interaction with external force field, described by its potential V . This leads to the study of
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random Hamiltonians, in particular those of Schrödinger type: given a sufficiently regular,
possibly random, potential V one considers the operator

H := H0 + V,

where H0 is the Hamiltonian of the system with no potential interaction. The best analysed
situation is that of H0 = −∆ (in various state-spaces X ). The spectrum of H is typically not
discrete. Moreover, spectral properties of such infinite-volume (i.e. defined on the whole space
X ) Schrödinger operators are usually difficult to handle. The notion of the integrated density of
states can come to the rescue: it captures some of the properties of the spectral distribution, while
being easier to calculate and easier to work with [4, Chapter VI].

Informally speaking, the integrated density of states arises as follows: one considers operators
H restricted to a finite volume Ω ⊂ X, builds empirical measures lΩ based on the spectra of these
operators normalized by the volume of Ω , i.e.

lΩ (dλ) :=
1

Vol(Ω )

∞∑
n=1

δλΩn (dλ),

and then one takes the limit of lΩ , in appropriate sense, when Ω ↗ X . The resulting limit (if it
exists) is called the integrated density of states (IDS, for short), and will be denoted by l. Same
procedure can be performed for random potentials V ω — in this case one is interested in the
almost-sure limiting behaviour of random measures lωΩ . When the potential V ω exhibits some
ergodicity properties then the limit can be nonrandom.

This paper is concerned with random Schrödinger operators with nonnegative Poissonian
potentials. In this case, the existence of the nonrandom IDS is a common feature and for
H0 = −∆ has been proven e.g. in the Euclidean space [14], hyperbolic space [25], the Sierpiński
gasket [18], other nested fractals [23]. In all these situations one has the so-called Lifschitz
singularity: the rate of decay of the IDS at the bottom of the spectrum is faster than that of the
IDS for the system without random external interaction. Note also that the Lifschitz singularity
is closely related to the behaviour of the so-called Wiener sausage when t → ∞ (for the sausage
asymptotics in the classical case see [7], on fractals see [18,21]).

While the IDS based on the Laplacian is fairly well understood (see e.g. [4,24]), it is not so
for the IDS based on nonlocal operators. In the case of Lévy processes on Rd , the existence and
asymptotical properties of IDS with Poissonian potentials have been established in [15,16]. Up
to date, there were no results concerning the ‘nonlocal IDS’ on irregular sets, such as fractals.
Recently, we have proven the existence of the IDS for subordinate Brownian motions on the
Sierpiński gasket perturbed by Poissonian potentials with two-argument profiles W that may
have infinite range and local singularities [10]. The Lifschitz tail for stable processes on the
Sierpiński gasket evolving among killing Poissonian obstacles was derived in [13].

The present paper is meant as the continuation of [10] in the potential case. Under appropriate
assumptions on the potential V (expressed in terms of its profile function W , cf. (2.8) below) and
the Laplace exponent φ of the subordinator S (assumed to be a complete Bernstein function), we
analyse the asymptotical behaviour of the IDS based on the generator of the resulting subordinate
Brownian motion evolving in presence of the potential V . Our main results are included in
Theorems 4.4 and 3.3. They give the respective lower and upper bounds for l([0, x]) as x → 0+.
The rate of decay of l([0, x]) as x → 0+ is of order e−const ·x−σ

, where σ > 0 is a parameter
depending on the behaviour of φ at zero and on the rate of decay of the potential profile, W (x, y),
as the distance between points x, y tends to infinity. The upper and lower bounds require separate
assumptions on the process, and the constant σ may be different in the lower and the upper bound.
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