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A B S T R A C T

The ease of entering a vehicle, known as ingress, is one of the important ergonomic factors that car manu-
facturers consider during the process of vehicle design. Manufacturers frequently conduct human subject tests to
assess ingress discomfort for different vehicle designs. Using subject tests, manufacturers are able to estimate the
proportion of participants that report that they are discomfortable entering a vehicle, referred to in this paper as
fraction disaccommodated (FD). Manufacturers then conduct statistical tests in order to determine if the FD of two
vehicle designs are significantly different, and to determine the required sample size in testing the FD difference
between two vehicle designs under pre-specified testing power. Since conducting human subject tests is often
expensive and time consuming, another alternative is to estimate the FD using simulated human motion data.
Determining the number of simulations that is required is an important statistical question that is dependent on
the prediction performance of the simulation analysis. In this paper, a dual bootstrap approach is proposed to
obtain the standard deviation of the estimated FD based on functional predictors. This standard deviation is then
used to calculate the power in testing the difference between two estimated FDs.

1. Introduction

The ease of getting into a vehicle, known as ingress, is an important
consideration for customer satisfaction in the automotive industry
(Morgans and Thorness, 2013). This has motivated vehicle manu-
facturers to focus on assessing and improving ingress discomfort. The
most straightforward way to assess ingress discomfort is to build pro-
totypes or mockups and have human participants test these potential
vehicle designs. Participants rate the ease of getting into the vehicle
using a Likert scale. For example, using a 10-point scale, participants
might rate a design 1 out of 10 if it is very difficult to get into the
vehicle and 10 out of 10 if the ingress motion is exceptionally com-
fortable. These ingress ratings can also be transformed into binary re-
sponses using a cutpoint. Using cutpoint 5, for example, ratings below
or equal to 5 are transformed to 0 (or “uncomfortable”) and ratings
above 5 are transformed to 1 (or “comfortable”). One metric of interest
is the proportion of participants who rated the ingress discomfort of a
design above a defined cutpoint, referred to as fraction disaccommodated
(FD). As the population FD (true FD) for a certain vehicle design is
unknown, the participants responses are usually considered as a sample
for estimating the population ingress fraction disaccommodated, which

is denoted as∼FD in this research.
As it is generally expensive and time-consuming to conduct tests

with participants to assess ingress discomfort, manufacturers seek more
efficient ways to assess ingress discomfort, including computer simu-
lation (Wegner et al., 2007). Advances in digital human modeling
technologies have provided the ability to simulate the ingress motion of
people with a wide range of anthropometric features (Reed et al., 2006;
Reed and Huang, 2008). However, even if accurate methods for simu-
lating ingress motions are available, it is still necessary to predict the
subjective responses from the motion data. Masoud et al. (2016) de-
veloped a systematic framework that used human motion trajectories to
predict subjective ingress discomfort responses using a machine-
learning approach based on support vector machines (SVM). By using
this framework, the FD of a vehicle design can be predicted by con-
ducting simulations for a wide range of drivers (e.g., tall and short,
young and old) and predicting subjective responses from the simulated
motion data. This simulation-based approach can expedite the vehicle
design validation process and reduce the cost of testing participants in
physical mockups. To differentiate between the estimated FD obtained
using participant responses (∼FD) and the predicted FD obtained using

actual or simulated human motion data, we denote the latter asˆFD .
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In many cases, manufacturers are interested in knowing whether the
ingress discomfort of one design is better than that of another. For this
purpose, manufacturers may conduct a statistical hypothesis test to
examine whether the FD of one design is significantly higher than that
of another. Moreover, after a design change has been made, manu-
facturers seek to determine the minimum sample size that can provide a
definitive assessment of the difference between two designs in terms of
their FD values. In literature, many methods have been developed to
test whether there is a significant difference between two proportions
(Newcombe, 1998). Power calculations and sample size determination
for testing the difference between proportions have also been studied
(Faul et al., 2007; Cohen, 2013). In these methods, the responses used
to estimate the proportions are assumed to be i.i.d (independent and
identically distributed) and to follow a binomial distribution, i.e., each
response has an equal probability of success (p) and the standard de-
viation of the sample proportions is equal to = −σp

p p
n

(1 ) . Although

this assumption is appropriate for ∼FD, which is estimated using sub-
jective responses, it is not immediately apparent that this relationship

can be used to estimate the standard deviation ofˆFD due to the com-
plex relationship between the motion model parameterization and the
predicted subjective responses.

The objective of this paper is to develop a method for conducting

power calculations in comparing twoˆFD s in which the response pro-

portionˆFD are predicted from functional data obtained either from
physical or virtual experiments. To conduct the power calculations, we

must estimate the standard deviation ofˆFD , referred to as σFD in this
research. We developed a dual-bootstrapping approach that enables us
to consider the two sources of variation in σFD. One is the modeling
variation, which is due to the uncertainty of the estimated prediction
model σ( )m under different training datasets, and the other is the sam-
pling variation due to the randomness of selecting test participants from
the population σ( )s .

2. Methods

2.1. Data source

The data in this study was obtained from a vehicle ingress experi-
ment that was conducted to study and reduce discomfort during ingress
(Masoud et al., 2016). In brief, the experiment captured human motion
data from 32 participants during vehicle ingress trials. Participants
evaluated 17 vehicle designs that differed widely in the layout of the
driver entry area. During each ingress test, reflective markers were used
to record the location over time (trajectories) of 20 different joints. The
trajectories of each joint were modeled by 27 B-spline coefficients. After
participants completed an ingress trial (sample), they rated the ease of
getting into the car on a 10-point scale, where 1 represents an un-
acceptable ingress experience and 10, an exceptionally comfortable
ingress experience. The ingress discomfort rating was then transformed
into a binary response using the cutpoint equal to 5, i.e., ratings below
or equal to 5 were set as 0, and those above 5 were set as 1. In this
research, the Cartesian trajectories of the 5 joints (left hip, right
shoulder, right elbow, S1L5, and head) are used. The coordinates of
these kinematic joints were identified by Masoud et al. (2016) as the
most informative kinematic data for predicting ingress discomfort.

2.2. Method overview

A dual bootstrap or resampling approach was developed to estimate
σFD, which includes two types of variation, σm and σs. A bootstrap ap-
proach is necessary because the complex relationship between the
motion model and the predicted subjective responses precludes the use
of the binomial distribution for estimating the standard deviation for

the response proportionˆFD . As shown in Fig. 1, the first step is to

generate a set of “bootstrap training datasets” by randomly resampling
from the original dataset X Y( , )t t obtained from physical participant-
tests described in the previous section, where Xt is the human motion
data and Yt , the corresponding participant ingress discomfort response.
Each of the generated bootstrap training datasets ∗ ∗X Y( , )t

b
t

b (b=1,…,
B) is used to train a prediction model using an SVM classifier (Masoud
et al., 2016). With B bootstrap training datasets, we can obtain a set of
prediction models, i.e., B different SVM classifiers, as shown in Fig. 1.
The second step is to generate “bootstrap prediction datasets” for the
two designs to be compared. As shown in Fig. 1, the bootstrap predic-
tion datasets are generated by randomly resampling from Xp to gen-
erate J bootstrap prediction datasets … …∗ ∗ ∗ ∗X X X X, , , , ,p p p

j
p

J1 2 . These
bootstrap prediction datasets are then used along with one trained SVM

model to predict JˆFD for the design of interest (i.e., oneˆFD for each

bootstrap prediction dataset). These predictedˆFD are used to predict
the sampling variance (σs) that arises due to the randomness in the
prediction dataset. By repeating this process B times, through each of
the SVM models, we can estimate the modeling variance (σm) induced
by the uncertainty in the estimated prediction models. The details of
each step are discussed in the following subsections.

2.3. Generate bootstrap training datasets

Assume that = …X x x x( , , , )t
t t

n
t

1 2 0 represents the original training
dataset obtained from the human participant-tests, where xi

t represents
the vector of human motion data of one ingress sample, represented as
B-spline coefficients; n0, the number of samples; and

= …Y y y y( , , , )t
t t

n
t

1 2 0
, the participant's binary ingress discomfort re-

sponses, where yi
t is the discomfort rating corresponding to the motion

data sample xi
t . A bootstrap training dataset

= … = …∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗X x x x Y y y y( , , , ), ( , , , )t
b b b

n
b

t
b b b

n
b

1 2 1 20 0
is generated by ran-

domly resampling, with replacement, n0 times from the original dataset
Xt and Yt , where * represents a bootstrap sample and b, the bootstrap
replication index. This replication process is performed B times to
generate a large number of bootstrap training datasets ∗Xt

1, …∗ ∗X X, ,t t
B2

and …∗ ∗ ∗Y Y Y, , ,t t t
B1 2 . In this analysis, the number of bootstrap data-

sets, denoted as B, was set to 100.

2.4. Train SVM prediction models

In this step, the bootstrap training datasets are used to train SVM
prediction models (Cortes and Vapnik, 1995). SVM is a supervised
learning classifier that has gained popularity in recent years as it can
handle nonlinear classification and is robust to outliers (Cherkassky and
Ma, 2004; Pal and Foody, 2010).

In this work, each set of bootstrap training datasets, ∗Xt
b and ∗Yt

b,
was used to train a separate SVM classifier, thus generating B different
SVM models … …SVM SVM SVM SVM( , , , , , )b B(1) (2) ( ) ( ) . The SVM models
were trained using a Gaussian RBF kernel. The parameters of the RBF
kernel were optimized for the original datasets Xt and Yt using grid
search to minimize the bias between the FD estimated from the pre-

diction model (ˆFD ) and that estimated from participant responses

(∼FD); i.e., ⎜ ⎟∑ ⎛
⎝

− ⎞
⎠

∼
= ˆFD FDd

D
d d1

2

is minimized, where d is the index of

different vehicle designs. Details of training an SVM model for classi-
fying functional data can be found in Masoud et al. (2016).

2.5. Generate bootstrap prediction datasets

Assume that = … = …′
′ ′ ′X x x x and X x x x( , , , ) ( , , , )p

p p
n
p

p
p p

n
p

1 2 1 2 re-
present the human motion data corresponding to two different designs
indicated by subscripts p and ′p respectively, where n represents the
number of motion data samples obtained though visual experimental
tests or computer simulations. The participants tested in Design p can be
either different from those in Design ′p , referred to as independent
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