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A B S T R A C T

This paper studies soliton dynamics for Biswas-Arshed model that is considered when group
velocity dispersion is negligibly small and self-phase modulation is totally absent. Two nonlinear
forms for the model are studied by the aid of extended trial function scheme. Bright, dark and
singular soliton solutions emerge from this scheme.

1. Introduction

Optical solitons form the basic ingredient to transfer information across the globe for trans-continental and trans-oceanic distances.
There is a wide variety of model that successfully describe this dynamics of soliton formation [1–13]. The basic principle for the sus-
tainment of solitons in optical fibers, metamaterials, PCF and crystals is the existence of a delicate balance between dispersion and
nonlinearity. It may so happen that circumstantial situations lead to low group velocity dispersion (GVD) and absence of nonlinearity. Does
this mean that solitons cease to exist under such a situation? Biswas and Arshed recently proposed a very innovative idea to circumvent
such a crisis situation. This is reflected in their model that is being referred to as Biswas-Arshed equation [5]. This model was proposed
during 2018 with two nonlinear forms and they are Kerr and power law. This paper will address both of these models by extended trial
function scheme which will lead to the retrieval of bright, dark and singular soliton solutions. The results are to follow in upcoming sections.

2. Governing model

This section will study Biswas-Arshed equation in two forms.

2.1. Form-I

The model with higher order dispersions and absence of self-phase modulation (SPM) is given by [5]:
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In Eq. (1), the first term represents temporal evolution while a1 and a2 are the coefficients of GVD and spatio-temporal dispersion
(STD). Then, b1 and b2 account for third order dispersion (3OD) and third order spatio-temporal dispersion. These dispersion terms
will accommodate the low count of GVD. Then with absence of SPM, the nonlinearity effect stems from the coefficients of λ, μ and θ
which arise from self-steepening effect and nonlinear dispersions respectively. Thus these compensatory effects of dispersion and
nonlinearity provide the necessary balance to sustain soliton propagation.

2.1.1. Mathematical preliminaries
To begin with the integration process, one supposes:

=q x t g s e( , ) ( ) ,i x t( , ) (2)

where g denotes the amplitude portion of the wave and

=s x vt, (3)

where v is the soliton speed. The phase component is structured as:

= + +x t x t( , ) .0 (4)

where κ is the frequency, ω is the wave number and θ0 is the phase constant.
Next, plug in (2) into (1). The real part gives:
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where g′ = dg/ds and g″= d2g/ds2. Then, the imaginary part implies:
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Upon integrating with respect to s once and choosing the integration constant to be zero leads to:
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As the function g satisfies (5) and (7), the constraint condition that emerges is:
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provided that
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The two expressions, (9) and (10), kick in the condition
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Eq. (5) will be now analyzed by extended trial function scheme (ETFS) [6–9] under the condition (12).

2.1.2. Extended trial function method
To start off, the solution structure to (5) is given by
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Here γ0, …, γς; μ0, …, μσ and χ0, …, χρ are unknown coefficients that will be fixed later such that γς, μσ and χρ are non-zero constants.
Eq. (14) can be reformulated with an integral form as below:
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