Original article

Discrete Hardy's inequalities with $0<p \leqslant 1$

Kwok-Pun Ho
Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China

A R T I C L E I N F O

Article history:

Received 23 February 2017
Accepted 19 March 2017
Available online xxxx

Abstract

We generalize the famous discrete Hardy inequality to $0<p \leqslant 1$. We obtain this generalization by using the atomic decompositions of the discrete Hardy spaces. © 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The main theme of this paper is the following discrete Hardy inequalities.

Let $0<p \leqslant 1$. There exists a constant $C>0$ such that for any sequence $a=\{a(n)\}_{n \in \mathbb{Z}}$ with $a(-n)=0, n \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
\left(\sum_{m \in \mathbb{N}}\left(\frac{1}{m} \sum_{j=1}^{m} a(j)\right)^{p}\right)^{\frac{1}{p}} \leqslant C\left(\sum_{m \in \mathbb{N}}|a(m)|^{p}+\sum_{\min \mathbb{Z}}\left|\sum_{j \neq m} \frac{a(j)}{m-j}\right|^{p}\right)^{\frac{1}{p}} . \tag{1}
\end{equation*}
$$

The family of Hardy inequalities, which consists of the discrete form and the integral form, is one of the most important inequalities in analysis. For the history of the Hardy inequalities, the reader is referred to Kufner et al. $(2006,2007)$. For the applications and further developments of this famous inequality, the reader may consult (Kufner et al., 2007; Kufner and Persson, 2003; Opic and Kufner, 1990).

Recently, the integral form Hardy inequality had been extended to Hardy spaces on \mathbb{R}. In Ho (2016), the Hardy inequalities in Hardy spaces are established by using the atomic decompositions of Hardy spaces. This method is also used in Ho (2016, 2017a,b) to study the Hardy inequalities on Hardy-Morrey spaces with variable exponents and weak Hardy-Morrey spaces.

In this paper, we use the idea from Ho (2016) to obtain the above generalization (1) of Hardy's inequality to $0<p \leqslant 1$.

To apply the method in Ho (2016), we need to consider the discrete analogue of the classical Hardy spaces on \mathbb{R}. The discrete Hardy spaces had been introduced in Boza and Carro (1998, 2002). Moreover, the atomic decompositions of the discrete Hardy spaces were also obtained in Boza and Carro (1998, 2002). These atomic decomposition are precisely what we need to establish the discrete Hardy inequality with $0<p \leqslant 1$.

Thus, on one hand, we extend the classical discrete Hardy inequalities to $0<p \leqslant 1$, on the other hand, the main result of this

[^0]paper gives an application of the atomic decompositions established in Boza and Carro $(1998,2002)$.

This paper is organized as follows. In Section 2, we recall the definition of the discrete Hardy spaces. The atomic decompositions for the discrete Hardy spaces are also presented in this section. The discrete Hardy inequalities with $0<p \leqslant 1$ are established in Section 3.

2. Discrete Hardy spaces

In this section, we first recall the definition of the discrete Hardy spaces by discrete Hilbert transform on \mathbb{Z}.

For any sequence $a=\{a(n)\}_{n \in \mathbb{Z}}$, the discrete Hilbert transform of a is defined by
$\left(H^{d} a\right)(m)=\sum_{n \neq m} \frac{a(n)}{m-n}$.
For any $B \subset \mathbb{Z}$, let $|B|$ denote the cardinality of B.
We use the definition of discrete Hardy spaces from (Boza and Carro, 1998, Definition 3.1).

Definition 2.1. Let $0<p \leqslant 1$. The discrete Hardy spaces $H^{p}(\mathbb{Z})$ consists of those sequence $a=\{a(n)\}_{n \in \mathbb{Z}}$ satisfying
$\|a\|_{H^{p}(\mathbb{Z})}=\|a\|_{p^{(\mathbb{Z})}}+\left\|H^{d} a\right\|_{p^{(\mathbb{Z})}}<\infty$.
In view of the above definition, we see the reason why the second summation on the left hand side of (1) is taking over \mathbb{Z}.

We now present the atomic characterization of $H^{p}(\mathbb{Z})$, we begin with the definition of $H^{p}(\mathbb{Z})$-atom (Boza and Carro, 1998, Definition 3.9).

Definition 2.2. Let $0<p \leqslant 1$. A sequence $a=\{a(k)\}_{k \in \mathbb{Z}}$ is an $H^{p}(\mathbb{Z})$-atom if it satisfies
(1) supp a is contained in a ball in \mathbb{Z} of cardinality $2 n+1, n \geqslant 1$.
(2) $\|a\|_{1^{\infty}(\mathbb{Z})} \leqslant(2 n+1)^{-1 / p}$.
(3) $\sum_{n \in \mathbb{Z}} \mathbb{Z}^{\alpha} a(n)=0$ for every $\alpha \in \mathbb{N}$ with $\alpha \leqslant \frac{1}{p}-1$.

To present the atomic decomposition of $H^{p}(\mathbb{Z})$, we recall the atomic version of $H^{p}(\mathbb{Z})$ from (Boza and Carro, 1998, p.43).

Definition 2.3. Let $0<p \leqslant 1$. The atomic discrete Hardy space $H_{\mathrm{at}}^{p}(\mathbb{Z})$ consists of those sequence $a=\{a(n)\}_{n \in \mathbb{Z}}$ such that
$a=\sum_{j \in \mathbb{N}} \lambda_{j} a_{j}$
where a_{j} are $H^{p}(\mathbb{Z})$-atoms and
$\|a\|_{H_{\mathrm{at}^{p}(\mathbb{Z})}}=\inf \left\{\left(\sum_{j \in \mathbb{N}}\left|\lambda_{j}\right|^{p}\right)^{\frac{1}{p}}\right\}$
where the infimum is taken over all possible representations of a in terms of $H^{p}(\mathbb{Z})$-atoms.

The following result gives the atomic decomposition of $H^{p}(\mathbb{Z})$.
Theorem 1. Let $0<p \leqslant 1$. Then, there exist constants $B, C>0$ such that for any sequence $a=\{a(n)\}_{n \in \mathbb{Z}}$, we have
$B\|a\|_{H^{p}(\mathbb{Z})} \leqslant\|a\|_{H_{\mathrm{at}}^{p}(\mathbb{Z})} \leqslant C\|a\|_{H^{p}(\mathbb{Z})}$.
The reader is referred to (Boza and Carro, 1998, Theorems 3.10 and 3.14) for the proof of the above theorem.

We can also characterize discrete Hardy spaces by using Poisson integral and area functions, see (Boza and Carro, 1998, Theorems 3.4 and 3.8). The reader is also referred to Boza (2012) and Kanjin and Satake (2000), Komori (2002) for the factorization theorem and the molecular characterizations of discrete Hardy spaces, respectively.

The reader is also referred to Herz (1973), Ho (2009, 2012), Jiao et al. (2017), Weisz (1994) for some other applications of the atomic decompositions such as the characterizations of BMO and martingale BMO.

3. Hardy's inequalities

We establish the main result of this paper in this section. We first introduce the Hardy operators in order to simplify our presentation. For any $\alpha \in \mathbb{N} \cup\{0\}$ and $\mu>0$, define
$\left(T_{\alpha, \mu} a\right)(m)=\frac{1}{m^{\alpha-\mu+1}} \sum_{j=1}^{m} j^{\alpha} a(j), \quad m \in \mathbb{N}$.
Notice that when $\alpha=\mu=0$, we have
$\left(T_{0,0} a\right)(m)=\frac{1}{m} \sum_{j=1}^{m} a(j)$.
It is precisely the Hardy-Littlewood average for the sequence $a=\{a(k)\}_{k=1}^{\infty}$.

We are now ready to present the main result of this paper, the mapping properties of $T_{\alpha, \mu}$ on discrete Hardy spaces $H^{p}(\mathbb{Z})$.

Theorem 2. Let $0<p \leqslant 1$ and $0 \leqslant \mu<1$. Suppose that $\alpha \in \mathbb{N} \cup\{0\}$ satisfies $\alpha \leqslant \frac{1}{p}-1$. If
$\frac{1}{p}=\frac{1}{r}+\mu$,
then there exists a constant $C>0$ such that for any sequence $a \in H^{p}(\mathbb{Z})$ with support contained in \mathbb{N}, we have
$\left\|T_{\alpha, \mu} a\right\|_{I^{\prime}(\mathbb{N})} \leqslant C\|a\|_{H^{p}(\mathbb{Z})}$.
When $0<p \leqslant 1$ and $\alpha=\mu=0$, we have $p=r$ and the above theorem yields

$$
\left\|T_{0,0} a\right\|_{P^{p}(\mathbb{N})} \leqslant C\|a\|_{H^{p}(\mathbb{Z})} .
$$

In view of (2), it establishes the discrete Hardy inequality (1).
We need several supporting results to obtain the proof of Theorem 2. We start with the mapping property of $T_{\alpha, \mu}$ on $H^{p}(\mathbb{Z})$ atoms.

Lemma 3. Let $0<p \leqslant 1,0 \leqslant \mu<1$ and $\alpha \in \mathbb{N} \cup\{0\}$ with $\alpha \leqslant \frac{1}{p}-1$. Suppose that
$\frac{1}{q}-\frac{1}{r}<\mu \leqslant \frac{1}{q}$
for some $q>1$. If $a=\{a(n)\}_{n \in \mathbb{Z}}$ satisfies
(1) suppa is contained in a ball B in $\mathbb{N} \backslash\{0\}$ of cardinality $2 n+1, n \geqslant 1$,
(2) $\|a\|_{P^{\infty}(\mathbb{N})} \leqslant(2 n+1)^{-1 / p}$,
(3) $\sum_{n=0}^{\infty} n^{\alpha} a(n)=0$,
then, we have
$\left\|T_{\alpha, \mu} a\right\|_{I^{r}(\mathbb{N})} \leqslant C|B|^{\mu+\frac{1}{-}-\frac{1}{p}}$.

Proof. Let $B=\{i \in \mathbb{N}: M \leqslant i \leqslant N\}, M, N \in \mathbb{N}$. We have $|B|=N-M+1$. For any $i<M$, we have
$\left(T_{\alpha, \mu} a\right)(i)=\frac{1}{i^{\alpha-\mu+1}} \sum_{j=1}^{i} j^{\alpha} a(j)=0$.
Similarly, for any $i>N$, Items (1) and (3) assure that
$\left(T_{\alpha, \mu} a\right)(i)=\frac{1}{i^{\alpha-\mu+1}} \sum_{j=1}^{i} j^{\alpha} a(j)=\frac{1}{i^{\alpha-\mu+1}} \sum_{j \in \mathbb{N}} j^{\alpha} a(j)=0$.
Therefore, we find that $\operatorname{supp}\left(T_{\alpha, \mu} a\right) \subseteq B$.
The Hölder inequality yields
$\left|\sum_{j=1}^{m} j^{\alpha} a(j)\right| \leqslant\left(\sum_{j=1}^{m}|a(j)|^{q}\right)^{1 / q}\left(\sum_{j=1}^{m} j^{\alpha q \prime}\right)^{1 / q q^{\prime}} \leqslant C\|a\|_{\mid q} m^{\alpha+\frac{1}{q \prime}}$
for some $C>0$. Therefore,
$\left|\left(T_{\alpha, \mu} a\right)(m)\right| \leqslant C \frac{1}{m^{\alpha-\mu+1}}\|a\|_{q} m^{\alpha+\frac{1}{q^{\prime}}}=C m^{\mu-\frac{1}{4}}\|a\|_{q^{q}}$.
Furthermore, as $\operatorname{supp}\left(T_{\alpha, \mu} a\right) \subseteq B$ and $\mu \leqslant \frac{1}{q}$, we obtain

$$
\begin{aligned}
\left\|T_{\alpha, \mu} a\right\|_{l^{r}}^{r} & \leqslant C\|a\|_{q^{q}}^{r} \sum_{m=M}^{N} m^{r \mu-\frac{r}{q}} \leqslant C \int_{M}^{N+1} x^{r \mu-\frac{r}{q}} d x \\
& \leqslant C\|a\|_{q^{q}}^{r}\left(N^{r \mu-\frac{r}{q}+1}-M^{r \mu-\frac{r}{q}+1}\right) .
\end{aligned}
$$

Since $\frac{1}{q}-\frac{1}{r}<\mu \leqslant \frac{1}{q}$, we find that $0<r \mu-\frac{r}{q}+1 \leqslant 1$. Consequently,

$$
\left(N^{r \mu-\frac{r}{q}+1}-M^{r \mu-\frac{r}{q}+1}\right) \leqslant(N-M)^{r \mu-\frac{r}{q}+1} \leqslant|B|^{r \mu-\frac{r}{q}+1} .
$$

Hence,
for some $C>0$.

https://daneshyari.com/en/article/11016228

Download Persian Version:
https://daneshyari.com/article/11016228

Daneshyari.com

[^0]: E-mail address: vkpho@eduhk.hk

