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A B S T R A C T

Self-assembled nanostructures are increasingly used for nanoelectronic and optoelectronic applications due to
their high surface area to volume ratio and their ability to break traditional lithography limits. However, they
suffer due to poor yield and repeatability as the growth process is often not well studied or optimized. Gaussian
process regression (GPR) is a machine learning technique that can be used for both regression and classification
purpose. In the GPR framework, a probability measure is defined according to one prior belief about the response
surface and the Bayesian rule is applied to combine the observations with prior beliefs to form a posterior
distribution of the response surface, which is known as the “surrogate model”. We propose here the use of GPR as
an effective statistical tool to optimize the growth conditions of nanostructures so as to improve their yield,
controllability and repeatability ensuring at the same time that the yield is not affected by process variations at
the identified optimum process conditions. In effect, we are proposing a design for reliability and robust design
strategy for optimization of self-assembled nanostructure growth. We present here a case study of cadmium
selenide nanostructures making use of an extensive design of experiment result (available open source) to il-
lustrate the proposed methodology. The prediction accuracy of GPR is compared with two other commonly used
statistical models→ binomial and multinomial logistic regression. The use of the GPR method resulted in much
better accuracy of probabilistic prediction of the different nanostructures with fewer fitting parameters than the
logistic regression method.

1. Introduction

Considering the limitations posed by lithography and the cost in-
volved in the installation and use of extreme UV and other state-of-the-
art lithography tools, there is a growing desire in the micro and nano
community to leverage on self-assembly as an approach to achieve high
resolution nano-features where the patterns are guided by nature and
thermodynamics or at best using templates that are of larger spatial
dimensions than the feature sizes. The key problem with self-assembled
nanostructures is the variability in their growth and the intrinsic ran-
domness in the process that is difficult to understand, model and op-
timize using a purely physics-based perspective. The lack of controll-
ability and repeatability makes self-assembly an unattractive option for
silicon CMOS technology.

However, there are niche applications in optoelectronics and sen-
sing, where self-assembled structures are very desirable and cheap.
Some specific applications that benefit from self-assembly include lu-
minescence, lasing, biomedical imaging, sensing etc. Although there is

some leeway in the extent to which growth control of nanostructures is
required for these applications, it is still important to strive and ensure
optimum process conditions are used so as to have a manufacturing-
friendly recipe that has higher yield and improved sensitivity. To this
end, it becomes necessary to use statistical and machine learning
models to better quantify the relationship between the process para-
meters and the output metrics for nanostructure growth so that an
optimal set of process conditions could be chosen that ensures high
yield and robustness in the achieved outcome even in the presence of
inherent randomness in the process parameters. One such approach is
Gaussian process regression (GPR). This study makes an attempt to use
GPR as a stochastic surrogate model for modeling the dependencies
between the yield probability of obtaining certain types of nanos-
tructures and their corresponding growth conditions. The accuracy of
GPR will be compared with the binomial and multinomial Generalized
Linear Model (GLM) logistic regression techniques, which were recently
used by Dasgupta et al. [1] for the same purpose.

For a case study, we will be focusing on cadmium selenide (CdSe)
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based nanostructures here. There has been an extensive design of ex-
periment (DOE) done recently on CdSe-based nanostructures [1]. It is
known that CdSe can exhibit different types of one dimensional mor-
phology such as nanowires, nanobelts and nanosaws. The yield of these
different morphology types strongly depends on the growth condition.
This paper makes an attempt to use Gaussian process regression as a
stochastic surrogate model for modeling the dependencies between the
yield probability of nanostructures and their growth conditions. In this
work, we will use GPR to model the link between the probabilities of
obtaining the different specific types of CdSe nanostructures with three
process parameters→ temperature (T), pressure (P) and distance of the
source from the substrate (D).

Gaussian process regression models, also known as Kriging, can
approximate detailed mechanistic models and are capable of simpli-
fying highly nonlinear and computationally expensive problems. They
have been used for various machine learning and control tasks, such as
dimensionality reduction [2], nonlinear classification, system identifi-
cation, and regression [3]. Rather than defining a parametric function
for an input-output relationship as in the standard regression approach,
the GPR puts a prior to infinitely many functions and then combines
this prior belief with observation via the Bayes' rule to obtain posterior
distribution of functions, which ends up in a surrogate model. As a
result, many complex model responses can be fitted by this non-para-
metric approach. In surrogate modeling, it is normal to expect that the
input points that are close to each other should lead to a similar re-
sponse value. These similarities are encoded in GPR using the covar-
iance functions, which are also known as kernel functions. The in-
troduction of the kernel requires different hyper-parameters to be
optimized.

This paper is organized as follows. In Section 2, the details of the
DOE for CdSe nanostructures are introduced. In Section 3, we present a
brief overview of the Gaussian process regression technique. Section 4
presents the results of the GPR for modeling the probabilities of ob-
taining specific types of CdSe nanostructures for different growth
(process) conditions. We also compare the accuracy of GPR with the
binomial and multinomial Generalized Linear Model (GLM) logistic
regression. Since the growth conditions cannot be controlled very
precisely, the process parameters are considered as random variables
and sampling is carried out using the GPR surrogate model through
Monte Carlo simulations of the process parameter space to obtain the
average nanostructure yield probabilities and their variances. The
average yield probabilities are then optimized to find the growth con-
ditions that would allow maximal growth of a particular nanostructure
of interest with acceptable variance of the yield probabilities. Section 5
concludes the findings of the study in terms of the validity and effec-
tiveness of GPR as a nanoscale yield modeling and optimization tool.

2. Design of Experiment for CdSe growth

As mentioned earlier, the growth of CdSe almost always gives a
stochastic distribution of three different nanoscale structures→ nano-
belts, nanosaws and nanowires. Depending on the actual growth con-
ditions (process parameters→ P, T and D), the preferred type of na-
nostructure can be very different. An extensive DOE was carried out by
Dasgupta et al. in Ref. [1] for CdSe. They carried out a 5×9 full fac-
torial experiment with five levels of source temperature (630 °C, 700 °C,
750 °C, 800 °C, 850 °C) and nine levels of pressure (4, 100, 200, 300,
400, 500, 600, 700 and 800mbar). For a specific combination of source
temperature and pressure, 4–6 substrates were placed downstream of
the source to grow the nanostructures. Three experimental runs were
conducted at different locations along the furnace tube with each of the
45 combinations of temperature and pressure. The total number of
substrates processed with CdSe growth for 135 (=45×3) runs was
415. However, for the source temperature of 850 °C, no morphology
was observed in several experimental trials. Therefore, 67 experimental
runs at this temperature were discarded. Considering the remaining 348

trial runs as an experimental test case, the design matrix is a 348×3
matrix with normalized process parameters for T, P and D. For each
deposition process on the substrate, the SEM was used to count 180
individual nanostructures, which comprised of a mix of nanowires,
nanobelts and nanosaws. The fraction of these structures obtained was
considered as the output quantity of interest in this DOE.

3. Gaussian process regression (GPR) model

Gaussian process regression (GPR), just as any other meta-modeling
approach, aims at approximating the response of a model/experiment
given a finite set of observations. Within this context, let us consider a
system, whose behavior we want to study, which can be represented by
a response surface that maps M-dimensional inputs to the one dimen-
sional output space. A GPR model is a generalization of the multivariate
Gaussian random variable to an infinite dimension. It is described by
the equation:

� = +h fx x β x( ) ( ) ( )T (1)

where x is the multi-dimensional input variable, M(x) is the model
output,f(x) is a zero mean Gaussian random process with a covariance
function R(⋅;θ), h(x) is a vector of basis functions and β is a vector of
coefficients. The term h(x)Tβ is also called a trend. The hyper para-
meters, θ, associated with the covariance function, R(⋅;θ), are un-
knowns that need to be estimated from the available observation data.
The covariance function encodes the assumption about the response
surface that is being approximated. Different covariance functions are
available in the literature [4–6]. Given the trend and covariance func-
tion with unknown hyper parameters, it is possible to obtain an arbi-
trary number of realizations of the prior Gaussian process. The GPR
framework uses the Bayes' rule to condition the prior on the available
observation to make a prediction at a new point as:
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where σ is the measurement noise and N() is the Gaussian distribution.
In this work, the popular squared exponential covariance function

(R(x, x′; θ)) with automatic relevance determination mechanism (ARD)
is utilized (Eq. (3)).
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The vector θ=(σf,θ1,…,θM) is a vector of hyper-parameters. Note
that the ARD uses different length scales for different inputs to char-
acterize the inputs that may have different impact on the output. It is
normal to expect that similar inputs should lead to similar responses in
a surrogate model. Hence, the covariance in Eq. (3) is used to char-
acterize this similarity through the length scale, θi. The length scales
characterize how far one needs to move along a particular input space
to make the responses uncorrelated. This mechanism determines the
relevance of an input which is inversely proportional to the length
scale.

Therefore, the GPR model is completely defined by the coefficients
vector and the hyper parameters. The σf in the hyper-parameter vector
is used to characterize the degree of variation of the responses.
Assuming that there are P observation data from the experiments
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⌢θ , will be learnt from the

observation data by maximizing the log-likelihood expression (LKL)
given by:
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where Ip is an identity matrix (size P), H is a matrix of size P× r, r is the
number of basis functions and K is the covariance matrix of the
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