Accepted Manuscript

Improved electrochemical performance of metal doped Zirconia nanoparticles for detection of Ochratoxin-A

Pramod K. Gupta, Zishan H. Khan, Pratima R. Solanki

PII: DOI: Reference:	S1572-6657(18)30662-3 doi:10.1016/j.jelechem.2018.10.004 JEAC 12644
To appear in:	Journal of Electroanalytical Chemistry
Received date: Revised date: Accepted date:	18 April 20184 September 20181 October 2018

Please cite this article as: Pramod K. Gupta, Zishan H. Khan, Pratima R. Solanki, Improved electrochemical performance of metal doped Zirconia nanoparticles for detection of Ochratoxin-A. Jeac (2018), doi:10.1016/j.jelechem.2018.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Improved electrochemical performance of metal doped Zirconia nanoparticles for detection of Ochratoxin-A

Pramod K. Gupta^{a, b}, Zishan H. Khan^{b*} and Pratima R. Solanki^{a*}

^aSpecial Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India

^bDepartment of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi-110025, India

*Corresponding authors: pratimarsolanki@gmail.com;zishan_hk@yahoo.co.in

Abstract

Here, aluminum (Al) doped Zirconia nanoparticles (ZrO₂ NPs) were proposed as a novel material for the fabrication of an efficient electrochemical immunosensor. X-ray diffraction (XRD) analysis and high resolution-transmission electron microscopy (HR-TEM) images visualized phase stabilization and generation of oxygen deficiency in the ZrO₂ NPs due to doping of Al ions (Al^{3+}) in ZrO₂ lattice. On the increase in Al^{3+} concentration, a sequential decrease in crystallite size of ZrO₂NPs describes the Zener pinning effect. Further increase in Al³⁺concentration (beyond 11 mol%) terminated crystallinity of ZrO₂ NPs. The generated oxygen deficiency due to Al³⁺ doping increased the surface charge and hydrophilicity of ZrO₂ NPs as observed by zeta potential and contact angle measurements, respectively. Moreover, oxygen deficiency was the main reason for the remarkable enhancement in the electrochemical behavior of Al³⁺ doped ZrO₂ NPs, and maximum was observed for 7 mol% Al³⁺ doped ZrO₂ NPs. Thus, 7 mol% Al^{3+} doped ZrO₂ NPs based Al^{3+} -ZrO₂/ITO electrodes were fabricated*via* electrophoretic deposition and further functionalized with antibodies specific to Ochratoxin A (anti-OTA) and bovine serum albumin (BSA). Fabricated BSA/anti-OTA/Al³⁺-ZrO₂/ITO immunoelectrode showed improved sensitivity of 34.07 µA (log ng mL⁻¹)⁻¹ and LOD of 0.14 ng mL⁻¹ in the detection range of 1-10 ng mL⁻¹ as compared to BSA/anti-OTA/ZrO₂/ITO immunoelectrode for the detection of OTA. Moreover, recovery of OTA from the spiked sample was observed in the range of 93.3–99.2 % with maximum RSD of 4.86.

Keywords: Zirconia Nanoparticles, Metal doped, Electrochemical, Ochratoxin-A, Immunosensor

Download English Version:

https://daneshyari.com/en/article/11016572

Download Persian Version:

https://daneshyari.com/article/11016572

Daneshyari.com