Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Experimental research on selective adsorption of gaseous mercury (II) over SiO₂, TiO₂ and γ -Al₂O₃

Yiwu Zheng, Yufeng Duan*, Hongjian Tang, Chunfeng Li, Jiachen Li, Chun Zhu, Shuai Liu

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: Hg⁰ and HgCl₂ Selective adsorption γ -Al₂O₃ Basic sites SO₂ interference

ABSTRACT

Solid selective adsorption to partition mercury speciation (Hg^0, Hg^{2+}) in flue gas is known as the innovative technology in developing solid agents application in online measurement of mercury speciation by continuous emission monitoring system (Hg-CEMS). Porous materials SiO₂, TiO₂ and γ -Al₂O₃ were chosen as the selective adsorbents and the systematical experiments were conducted in a fixed-bed reactor. Adsorption tests indicated that Hg⁰ was scarcely adsorbed by these three porous adsorbents while Hg²⁺ exhibited an apparent adsorption behavior. γ -Al₂O₃ was verified to be efficient in Hg²⁺/Hg⁰ separation because of its high HgCl₂ adsorption capacity and SO₂ anti-interference ability. The intrinsic mechanisms of HgCl₂ selective adsorption and SO₂ competition over γ -Al₂O₃ surface sites were further investigated. Temperature programmed desorption (TPD) analyses demonstrated that the weak interaction between Hg⁰ and γ -Al₂O₃ surface was ascribed to a physisorption manner while the adsorption of HgCl₂ was characterized chemical bonding. Hydroxyl (Al-OH), Lewis Alⁿ⁺-Bronsted Oⁿ⁻ pairs and the coordinatively unsaturated oxygen (O²⁻ ions) were deduced to be effective basic sites for the chemisorption of HgCl₂ on γ -Al₂O₃. Simultaneously, the competitive adsorption between SO₂ and HgCl₂ in O²⁻ ions was confirmed to be responsible for the increased breakthrough of HgCl₂ over γ -Al₂O₃ layer with the existence of SO₂.

1. Introduction

Mercury (Hg) and its compounds have been a global concerned pollutant due to its toxicity, volatility and persistence in the environment. Human health is greatly threatened by its biomagnification in food chains at the same time, an excessive ingestion of Hg can cause an irretrievable damage of the brain, heart, lungs and immune system of human [1,2]. Coal combustion is widely known as the largest anthropogenic source of Hg emissions, accounting for 23% of the total anthropogenic Hg emission [3]. Generally, vapor phase Hg exists in the

https://doi.org/10.1016/j.fuel.2018.09.153

Received 17 July 2018; Received in revised form 3 September 2018; Accepted 29 September 2018 0016-2361/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

E-mail address: yfduan@seu.edu.cn (Y. Duan).

coal-fired flue gas mainly known as two forms, elemental mercury (Hg^0) and oxidized mercury (Hg^{2+}) [4,5]. Definitively, different chemical forms of Hg affect their properties and fates in the environment. Hg^0 is the predominate speciation of Hg emitted into the atmosphere, and it can undergo a long-range transport from source regions through atmospheric circulation. Hg^{2+} , mainly constituted by mercuric chloride $(HgCl_2)$, has a high chemical reactivity and water solubility than that of Hg^0 , which contributes to its efficient removal by wet scrubbers [6]. Thus, quantification of individual Hg speciation from combustion sources is critical to the establishment of an emission inventory of Hg speciation and development of Hg control technology, correspondingly.

At present, several methods for sampling and quantifying Hg emitted from stationary sources are developed, including Ontario Hydro Method (OHM), Hg continuous emissions monitoring system (Hg-CEMS) and sorbent traps [7-9]. Among these methods, Hg-CEMS is hugely popular in coal-fired power plants because of its real-time online character. However, owing to the limitation of existing Hg detection techniques in Hg²⁺ recognition, a pretreatment/conversion unit designed for achieving a complete separation and conversion of Hg^{2+} to Hg⁰ should be used prior to the analytical instrument to realize Hg speciation measurement by Hg-CEMS devices [10]. The conventional method for separation is applying the Hg²⁺ absorption solution, often KCl liquid, to react with Hg^{2+} and form a metal halomercurate [11]. Nevertheless, as a wet-chemistry method, the absorption solution requires to be replaced regularly and corrode the device seriously. Thus, a dry method for Hg speciation separation is urgently required with feature of economy, high-efficiency and long-term, especially, developing a solid sorbent which adsorb Hg^{2+} selectively and inert to Hg^{0} has been a research emphasis [12,13].

Due to the inertness of Hg⁰, high quality Hg⁰ adsorbents are mainly based on the chemical reaction or chemisorption via converting Hg⁰ to Hg²⁺, such as halogen or sulfur treated activated carbons [14,15] and transition metal oxides (Fe₂O₃, MnO₂, CeO₂, V₂O₅/TiO₂, etc.) [16-19]. Therefore, those materials containing Hg⁰ oxidation positions can't be used for Hg speciation separation. As a Lewis acidic molecule, HgCl₂ possesses a higher surface reactivity and is easier to be captured by particles than Hg⁰. Ca-based sorbents, particularly CaO, have been considered to be a potential material for HgCl₂ adsorption in coal-fired flue gas [20]. However, a poor gas-solid contact between its surface and adsorbate molecules has been found in the previous study owing to the limited specific areas and undeveloped pore structures of CaO [21]. Moreover, a 20% Hg⁰ adsorption efficiency of CaO was reported by Ren et al. [22]. Unlike Ca-based sorbents, porous materials SiO₂, TiO₂ and γ-Al₂O₃ have developed porous structures, large specific surface area and stable frameworks, which is beneficial for the diffusion of adsorbate in adsorbent pores and a further interaction with inner adsorption sites. Meanwhile, the poor adsorption performance of gaseous Hg⁰ due to a lack of effective oxidation positions on these materials was confirmed by Bhardawj et al. [23]. On the other hand, a large quantity of basic groups (hydroxyl) are found on SiO₂, TiO₂ and γ-Al₂O₃ surfaces during hydrolysis preparation [24-26], which were reported to be essential for HgCl₂ capture. However, to date, few literatures comprehensively studied the gaseous Hg⁰ and Hg²⁺ adsorption properties of these porous materials, and it is still uncertain whether HgCl₂ adsorption behaviors can be interfered by other acidic components in the flue gas such as SO₂ in high concentration or not.

In this work, porous materials SiO₂, TiO₂ and γ -Al₂O₃ were chosen as the selective adsorbent to partition Hg speciation. The surface and pore structure features of adsorbents were investigated through N₂ adsorption/desorption characterization, and the basic sites of adsorbents were determined by the combination of CO₂ temperature programmed (CO₂-TPD) method and Fourier transform infrared spectra (FTIR) characterization. Adsorption performances of gaseous Hg⁰ and HgCl₂ over the adsorbents were studied in N₂ and N₂ + SO₂ atmosphere, respectively. Moreover, combined with mercury temperature programmed desorption (Hg⁰/HgCl₂-TPD) results, the selective adsorption mechanism of Hg speciation on the adsorbent and the competitive manners between SO_2 and $HgCl_2$ were discussed in depth. The results of this work will offer a guiding significance to develop Hg speciation separation sorbents, which could be used in Hg-CEMS device for mercury speciation monitoring in coal-fired flue gas.

2. Materials and methods

2.1. Materials and analytical methods

The raw materials SiO₂ and TiO₂ were obtained from Sigma-Aldrich, America when γ -Al₂O₃ was received from Evonik Industries AG, German. All raw materials were sieved into particle with the size of 0.38–0.70 mm (24–40 mesh) and dried in a drying oven at 105 °C for 3 h before being used as adsorbents for Hg speciation adsorption experiments. Nitrogen (N₂, purity \geq 99.90%) and sulfur dioxide (SO₂, purity 11.05%) used in this work were both provided by Nanjing Special Gas Co., Ltd, China.

The N₂ adsorption and desorption isotherms of the sorbents were determined at -196 °C on an automatic volumetric multipoint apparatus (ASAP 2020, Micromeritics, USA) and then the specific surface area and pore structure parameters were obtained on the basis of Brunauer-Emmett-Teller (BET) equation and Barrett-Joyner-Halenda (BJH) method. The basicity of sorbents was evaluated by temperature programmed desorption using CO₂ as the probe molecule in an AutoChem II 2920 chemical adsorption instrument (Microtrac, USA), samples was firstly purged at 40 °C for 30 min with He in order to eliminate weakly adsorbed CO₂, and then heated from 40 °C to 800 °C under a helium flow (30 mL/min) with a pumping rate of 10 °C /min, CO₂ desorbed was finally detected by an on-line mass spectrometry. The IR spectra of sorbents was measured in a PerkinElmer 400 IR spectrometer (PerkinElmer, USA), and the data was recorded at a high resolution ratio of 1 cm⁻¹ over the range of 4000–400 cm⁻¹.

2.2. Experimental apparatus

The gaseous Hg⁰ and HgCl₂ adsorption experiments were carried out in a fixed-bed apparatus. As shown in Fig. 1, the apparatus consisted of Hg⁰/HgCl₂ vapor generator, flue gas premixing and preheating system, fixed-bed adsorption reactor, Hg vapor online analyzer and tail gas treatment system. The Hg⁰/HgCl₂ permeation device (VICI Metronics Inc, USA) was designed to produce persistent and constant Hg⁰ or HgCl₂ vapor at a specified temperature, N₂ flow (200 mL/min) was used as the carrier gas in this work, carrying the volatilized Hg⁰/HgCl₂ into the premixing and preheating system. Additionally, when investigated the effect of SO₂, SO₂ concentration was set to 1000 ppm and the total flow rate of simulated flue gas was kept 2 L/min. After being preheated and well mixed, simulated flue gas then entered the adsorption reactor where each trap contained two separated sorbent sections loaded with 100 mg adsorbents respectively (front section for Hg collection and back section for Hg breakthrough). Adsorbents were insulated by Hg-free fiberglass and adsorbed Hg⁰/HgCl₂ vapor at a constant temperature of 120 °C. Limited by the detection method of HgCl₂, only the concentrations of Hg⁰ in simulated flue gas from the inlet and outlet of the reactor could be detected continuously by an automatic Hg analyzer (VM3000, Mercury Instruments, GER).

In order to ascertain the adsorption structures of Hg⁰ and HgCl₂ on sorbents surfaces, a series of desorption experiments were conducted on a temperature programmed desorption furnace as displayed in Fig. 2. Sorbents were placed on a quartz boat immediately after mercury adsorption experiments, and heated from 40 °C to 800 °C with a heating rate of 10 °C/min. Hg desorbed from sorbents was then carried by pure N₂ flow (2 L/min) into the automatic Hg analyzer (VM3000, Mercury Instruments, GER). According to the temperature of desorption peaks in Hg⁰/HgCl₂-TPD curves, Hg⁰/HgCl₂ adsorption configurations and binding strength on adsorbent surfaces can be speculated. Download English Version:

https://daneshyari.com/en/article/11016618

Download Persian Version:

https://daneshyari.com/article/11016618

Daneshyari.com