Accepted Manuscript

Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature

Xiaoli Gong, Ran Zhao, Junqi Qin, Hanmei Wang, Dong Wang

PII: S1385-8947(18)31938-7

DOI: https://doi.org/10.1016/j.cej.2018.09.222

Reference: CEJ 20061

To appear in: Chemical Engineering Journal

Received Date: 29 May 2018
Revised Date: 6 September 2018
Accepted Date: 29 September 2018

Please cite this article as: X. Gong, R. Zhao, J. Qin, H. Wang, D. Wang, Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.09.222

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature

Xiaoli Gong ^{a,1}, Ran Zhao ^{a, 1,*}, Junqi Qin ^a, Hanmei Wang ^b, Dong Wang ^{b, *}

^a School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, Hubei, China;

^b Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan 430200, China

ABSTRACT

In this work, a new MOFs-NTP synergistic method was first proposed in order to study the denitration performance. As a highly efficient MOFs material, CuBTC was synthesized by microwave method and combined with non-thermal plasma (NTP) which achieved an ultra-efficiency of 97.87% for NO removal. It was 76.77% and 64.43% higher than that of the CuBTC-alone process and NTP-alone denitration process. The influential factors and characterization analysis (SEM, XRD, N₂) adsorption-desorption isotherms, ESR, XPS) were also investigated to study the synergistic effect of the MOFs-NTP denitration process. The results showed that CuBTC could be activated by NTP and generated the coordinatively unsaturated Cu(I)/Cu(II) sites which greatly enhanced the surface catalytic activity of CuBTC. NO was mainly reduced by Cu(I) sites to N₂. Cu(II) species can also be reacted with NO to generate Cu²⁺···(NO) adducts. The increase of carbonyl groups (C=O) and carboxyl groups (-COO) content also improved the chemisorption property of CuBTC. The results have shown that MOFs can serve as an ultra-efficient gas pollution adsorption material and will be more widely to be used in the field of environmental protection in 1 These authors contributed equally.

^{*} Corresponding author. Tel: +86 152 71863943. E-mail address: ranzhao.hust@gmail.com (R. Zhao), wangdon08@126.com (D. Wang)

Download English Version:

https://daneshyari.com/en/article/11016652

Download Persian Version:

https://daneshyari.com/article/11016652

<u>Daneshyari.com</u>