

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Subprime solutions of the classical Yang–Baxter equation

ALGEBRA

Garrett Johnson

Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA

ARTICLE INFO

Article history: Received 19 December 2017 Available online 25 September 2018 Communicated by Vera Serganova

MSC: 16T25 17B62

Keywords: Classical Yang-Baxter equation Frobenius functionals Parabolic subalgebras Frobenius Lie algebras Cremmer-Gervais r-matrices Principal elements

ABSTRACT

We introduce a new family of classical *r*-matrices for the Lie algebra \mathfrak{sl}_n that lies in the Zariski boundary of the Belavin– Drinfeld space ${\mathcal M}$ of quasi-triangular solutions to the classical Yang–Baxter equation. In this setting \mathcal{M} is a finite disjoint union of components; exactly $\phi(n)$ of these components are SL_n -orbits of single points. These points are the generalized Cremmer–Gervais r-matrices $r_{i,n}$ which are naturally indexed by pairs of positive coprime integers, i and n, with i < in. A conjecture of Gerstenhaber and Giaquinto states that the boundaries of the Cremmer-Gervais components contain r-matrices having maximal parabolic subalgebras $\mathfrak{p}_{i,n} \subseteq \mathfrak{sl}_n$ as carriers. We prove this conjecture in the cases when $n \equiv \pm 1 \pmod{i}$. The subprime linear functionals $f \in \mathfrak{p}_{i,n}^*$ and the corresponding principal elements $H \in \mathfrak{p}_{i,n}$ play important roles in our proof. Since the subprime functionals are Frobenius precisely in the cases when $n \equiv \pm 1 \pmod{i}$, this partly explains our need to require these conditions on i and n. We conclude with a proof of the GG boundary conjecture in an unrelated case, namely when (i, n) = (5, 12), where the subprime functional is no longer a Frobenius functional.

© 2018 Elsevier Inc. All rights reserved.

E-mail address: gjohns62@nccu.edu.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.09.033} 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

1. Introduction and main results

Throughout this paper, we assume the ground field \mathbb{F} has characteristic 0 although most results in this paper also hold for fields of nearly any other characteristic. In particular, we will fix a pair of positive integers i and n with i < n, and in some of the calculations that follow, the numbers 2 and n appear in denominators. Thus we need 2nto be a nonzero element of the ground field \mathbb{F} . For vectors u, v in an \mathbb{F} -vector space V, define $u \wedge v := \frac{1}{2} (u \otimes v - v \otimes u) \in V \wedge V \subseteq V \otimes V$. For a Lie algebra \mathfrak{g} and an element in the tensor space $r = \sum a_i \wedge b_i \in \mathfrak{g} \wedge \mathfrak{g}$ we say that r is a classical r-matrix if the Schouten bracket of r with itself

$$\langle r, r \rangle := [r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]$$
 (1.1)

is g-invariant. Here, $r_{12} = r \otimes 1$, $r_{23} = 1 \otimes r$, and $r_{13} = \sigma(r_{23})$, where σ is the linear endomorphism of $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ that permutes the first two tensor components: $\sigma(x \otimes y \otimes z) =$ $y \otimes x \otimes z$. Classical *r*-matrices arise naturally in the context of Poisson–Lie groups and Lie bialgebras (see e.g. [2, Chapter 1]). If $\langle r, r \rangle = 0$, then *r* is said to be a solution to the classical Yang–Baxter equation (CYBE). On the other hand, if $\langle r, r \rangle$ is non-zero and g-invariant, *r* is said to be a solution to the modified classical Yang–Baxter equation (MCYBE). Following [8], we let \mathcal{C} and \mathcal{M} denote the solution spaces of the CYBE and MCYBE respectively.

In the early 1980's Belavin and Drinfeld [1] classified the solutions to the MCYBE for the finite-dimensional complex simple Lie algebras and showed that the solution space \mathcal{M} is a finite disjoint union of components of the projective space $\mathbb{P}(\mathfrak{g} \wedge \mathfrak{g})$. The components of \mathcal{M} are indexed by triples $\mathcal{T} = (\mathcal{T}, \mathcal{S}_1, \mathcal{S}_2)$, where \mathcal{S}_1 and \mathcal{S}_2 are subsets of the set of simple roots of \mathfrak{g} and $\mathcal{T}: \mathcal{S}_1 \to \mathcal{S}_2$ is a bijection that preserves the Killing form and satifies a nilpotency condition. For any BD-triple $(\mathcal{T}, \mathcal{S}_1, \mathcal{S}_2)$, one can always produce another BD-triple \mathcal{T}' by restricting \mathcal{T} to a subset of \mathcal{S}_1 . This gives rise to the notion of a partial ordering on triples: $\mathcal{T}' < \mathcal{T}$. An interesting family of solutions of the MYCBE arises when considering maximal BD-triples with S_2 missing a single root. These occur only in the case when $\mathfrak{g} = \mathfrak{sl}_n$, and in this setting there are exactly $\phi(n)$ BD-triples of this type, where ϕ is the Euler-totient function [8]. The component of \mathcal{M} corresponding to such a triple can each be described as the SL_n -orbit of a single point $r \in \mathfrak{sl}_n \wedge \mathfrak{sl}_n$, called the *Cremmer-Gervais r-matrix* [4,7]. Hence, throughout we let i and n be a pair of positive coprime integers with i < n and let $r_{CG}(i,n)$ denote the corresponding Cremmer–Gervais r-matrix of type (i, n). The BD-triple associated to $r_{CG}(i, n)$ has the *i*-th simple root missing from S_2 . The Cremmer–Gervais *r*-matrices have explicit formulas which we describe in Section 2.2. For example when i = 1 and n=3, we have

$$\begin{aligned} r_{CG}(1,3) &= 2e_{12} \wedge e_{32} + e_{12} \wedge e_{21} + e_{13} \wedge e_{31} + e_{23} \wedge e_{32} \\ &+ \frac{1}{3} \left(e_{11} - e_{22} \right) \wedge \left(e_{22} - e_{33} \right) \in \mathfrak{sl}_3 \wedge \mathfrak{sl}_3. \end{aligned}$$

Download English Version:

https://daneshyari.com/en/article/11016751

Download Persian Version:

https://daneshyari.com/article/11016751

Daneshyari.com