Subprime solutions of the classical Yang-Baxter equation

Garrett Johnson
Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA

A R T I C L E I N F O

Article history

Received 19 December 2017
Available online 25 September 2018
Communicated by Vera Serganova

MSC:

16 T 25
17B62

Keywords:

Classical Yang-Baxter equation
Frobenius functionals
Parabolic subalgebras
Frobenius Lie algebras
Cremmer-Gervais r-matrices
Principal elements

Abstract

We introduce a new family of classical r-matrices for the Lie algebra $\mathfrak{s l}_{n}$ that lies in the Zariski boundary of the BelavinDrinfeld space \mathcal{M} of quasi-triangular solutions to the classical Yang-Baxter equation. In this setting \mathcal{M} is a finite disjoint union of components; exactly $\phi(n)$ of these components are $S L_{n}$-orbits of single points. These points are the generalized Cremmer-Gervais r-matrices $r_{i, n}$ which are naturally indexed by pairs of positive coprime integers, i and n, with $i<$ n. A conjecture of Gerstenhaber and Giaquinto states that the boundaries of the Cremmer-Gervais components contain r-matrices having maximal parabolic subalgebras $\mathfrak{p}_{i, n} \subseteq \mathfrak{s l}_{n}$ as carriers. We prove this conjecture in the cases when $n \equiv \pm 1(\bmod i)$. The subprime linear functionals $f \in \mathfrak{p}_{i, n}^{*}$ and the corresponding principal elements $H \in \mathfrak{p}_{i, n}$ play important roles in our proof. Since the subprime functionals are Frobenius precisely in the cases when $n \equiv \pm 1(\bmod i)$, this partly explains our need to require these conditions on i and n. We conclude with a proof of the GG boundary conjecture in an unrelated case, namely when $(i, n)=(5,12)$, where the subprime functional is no longer a Frobenius functional.

© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction and main results

Throughout this paper, we assume the ground field \mathbb{F} has characteristic 0 although most results in this paper also hold for fields of nearly any other characteristic. In particular, we will fix a pair of positive integers i and n with $i<n$, and in some of the calculations that follow, the numbers 2 and n appear in denominators. Thus we need $2 n$ to be a nonzero element of the ground field \mathbb{F}. For vectors u, v in an \mathbb{F}-vector space V, define $u \wedge v:=\frac{1}{2}(u \otimes v-v \otimes u) \in V \wedge V \subseteq V \otimes V$. For a Lie algebra \mathfrak{g} and an element in the tensor space $r=\sum a_{i} \wedge b_{i} \in \mathfrak{g} \wedge \mathfrak{g}$ we say that r is a classical r-matrix if the Schouten bracket of r with itself

$$
\begin{equation*}
\langle r, r\rangle:=\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right] \tag{1.1}
\end{equation*}
$$

is \mathfrak{g}-invariant. Here, $r_{12}=r \otimes 1, r_{23}=1 \otimes r$, and $r_{13}=\sigma\left(r_{23}\right)$, where σ is the linear endomorphism of $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ that permutes the first two tensor components: $\sigma(x \otimes y \otimes z)=$ $y \otimes x \otimes z$. Classical r-matrices arise naturally in the context of Poisson-Lie groups and Lie bialgebras (see e.g. [2, Chapter 1]). If $\langle r, r\rangle=0$, then r is said to be a solution to the classical Yang-Baxter equation (CYBE). On the other hand, if $\langle r, r\rangle$ is non-zero and \mathfrak{g}-invariant, r is said to be a solution to the modified classical Yang-Baxter equation (MCYBE). Following [8], we let \mathcal{C} and \mathcal{M} denote the solution spaces of the CYBE and MCYBE respectively.

In the early 1980's Belavin and Drinfeld [1] classified the solutions to the MCYBE for the finite-dimensional complex simple Lie algebras and showed that the solution space \mathcal{M} is a finite disjoint union of components of the projective space $\mathbb{P}(\mathfrak{g} \wedge \mathfrak{g})$. The components of \mathcal{M} are indexed by triples $\mathcal{T}=\left(\mathcal{T}, \mathcal{S}_{1}, \mathcal{S}_{2}\right)$, where \mathcal{S}_{1} and \mathcal{S}_{2} are subsets of the set of simple roots of \mathfrak{g} and $\mathcal{T}: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ is a bijection that preserves the Killing form and satifies a nilpotency condition. For any BD-triple ($\mathcal{T}, \mathcal{S}_{1}, \mathcal{S}_{2}$), one can always produce another BD-triple \mathcal{T}^{\prime} by restricting \mathcal{T} to a subset of \mathcal{S}_{1}. This gives rise to the notion of a partial ordering on triples: $\mathcal{T}^{\prime}<\mathcal{T}$. An interesting family of solutions of the MYCBE arises when considering maximal BD-triples with \mathcal{S}_{2} missing a single root. These occur only in the case when $\mathfrak{g}=\mathfrak{s l}_{n}$, and in this setting there are exactly $\phi(n)$ BD-triples of this type, where ϕ is the Euler-totient function [8]. The component of \mathcal{M} corresponding to such a triple can each be described as the $S L_{n}$-orbit of a single point $r \in \mathfrak{s l}_{n} \wedge \mathfrak{s l}_{n}$, called the Cremmer-Gervais r-matrix [4,7]. Hence, throughout we let i and n be a pair of positive coprime integers with $i<n$ and let $r_{C G}(i, n)$ denote the corresponding Cremmer-Gervais r-matrix of type (i, n). The BD-triple associated to $r_{C G}(i, n)$ has the i-th simple root missing from \mathcal{S}_{2}. The Cremmer-Gervais r-matrices have explicit formulas which we describe in Section 2.2. For example when $i=1$ and $n=3$, we have

$$
\begin{aligned}
r_{C G}(1,3)= & 2 e_{12} \wedge e_{32}+e_{12} \wedge e_{21}+e_{13} \wedge e_{31}+e_{23} \wedge e_{32} \\
& +\frac{1}{3}\left(e_{11}-e_{22}\right) \wedge\left(e_{22}-e_{33}\right) \in \mathfrak{s l}_{3} \wedge \mathfrak{s l}_{3}
\end{aligned}
$$

https://daneshyari.com/en/article/11016751

Download Persian Version:
https://daneshyari.com/article/11016751

Daneshyari.com

[^0]: E-mail address: gjohns62@nccu.edu.

