FI SEVIER

Contents lists available at ScienceDirect

Journal of Geometry and Physics

iournal homepage: www.elsevier.com/locate/geomphys

The Frobenius–Virasoro algebra and Euler equations-II: Multi-component cases

Shilin Ma, Yemo Wu, Dafeng Zuo*

School of Mathematical Science, University of Science and Technology of China, Hefei 230026, PR China

ARTICLE INFO

Article history: Received 25 April 2018 Received in revised form 12 August 2018 Accepted 11 September 2018 Available online xxxx

ABSTRACT

Let W_A be the vector field Lie algebra with values in the Frobneius algebra A of rank N. We show that the second continuous cohomology group is

$$\mathrm{H}^2(W_{\mathcal{A}}, \mathbb{K}) = \bigoplus_{k=1}^N \mathbb{K} \omega_k, \quad \mathbb{K} = \mathbb{C} \quad \text{or} \quad \mathcal{A},$$

where $\omega_1, \ldots, \omega_N$ are \mathbb{C} -valued basic Gelfand–Fuchs cocycles. As an application, we present a generalized Virasoro algebra $\operatorname{vir}_{\mathcal{A}[\alpha_1,\ldots,\alpha_k]}$. We also consider another kind of generalization and propose a multi-component Frobenius–Virasoro algebra $\operatorname{vir}_{\mathcal{A}}^{[n]}$ and study its related Euler-type equations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathcal{A} be a Frobenius algebra over \mathbb{C} with the basis $\{e^1,\ldots,e^N\}$ satisfying $e^i\circ e^j=\sum_{k=1}^N C_k^{ij}e^k$. Let

$$W_{\mathcal{A}} = \left\{ U(x)\partial | U \in C^{\infty}(\mathbb{S}^1, \mathcal{A}) \right\}, \quad \partial = \frac{d}{dx}$$
(1.1)

be the set of all vector fields valued in A with the commutation relation

$$[U\partial, V\partial] = (U \circ V_X - V \circ U_X)\partial, \quad U, V \in C^{\infty}(\mathbb{S}^1, A). \tag{1.2}$$

Then $(W_{\mathcal{A}}, [\ ,\])$ forms a Lie algebra [4,26], called to be the Frobenius–Witt algebra. For any $U(x)\partial \in W_{\mathcal{A}}$, it could be expanded into an \mathcal{A} -valued Fourier series

$$U(x)\partial = -\sqrt{-1}\sum_{k=1}^{N}\sum_{m\in\mathbb{Z}}u_{k,m}L_{m}^{k}, \quad u_{k,m}\in\mathbb{C},$$

where $L_m^k = \sqrt{-1} \exp(\sqrt{-1}mx) e^k \partial$, then

$$[L_m^i, L_n^j] = (m-n) \sum_{k=1}^N C_k^{ij} L_{m+n}^k.$$
(1.3)

So, $\{L_m^k | m \in \mathbb{Z}, k = 1, ..., N\}$ could be regarded as a basis for the Frobenius–Witt algebra W_A .

E-mail addresses: mashilin@mail.ustc.edu.cn (S. Ma), wymo@mail.ustc.edu.cn (Y. Wu), dfzuo@ustc.edu.cn (D. Zuo).

^{*} Corresponding author.

When $A = \mathbb{C}$, the Frobenius–Witt algebra $W_{\mathbb{C}}$ is the Witt algebra, which has a unique central extension called the Virasoro algebra $vir = W_{\mathbb{C}} \bigoplus \mathbb{C}Z$. More precisely, write $L_m = L_m^1$,

$$[L_m, L_n] = (m-n)L_{m+n} + \delta_{m+n,0} \frac{m^3 - m}{12} Z, \quad [Z, L_m] = 0, \quad m, \ n \in \mathbb{Z}.$$

The two-cocycle

$$\omega_{\mathbb{C}}(L_m, L_n) = \delta_{m+n,0} \frac{m^3 - m}{12} \in H^2(W_{\mathbb{C}}, \mathbb{C}) = \mathbb{C}$$

is called the Gelfand–Fuchs cocycle [11,14,19]. The Virasoro algebra is closely related to Kac–Moody algebras and plays an important role in 2D conformal field theory, please see e.g. [9,12] and references therein.

A natural question is to study possible central extensions of the Frobenius–Witt algebra W_A . For instance, in [3,4], they proposed a one-dimensional central extension as follows

$$[L_m^i, L_n^j] = (m-n) \sum_{k=1}^N C_k^{ij} L_{m+n}^k + \sum_{k=1}^N \alpha_k C_k^{ij} \frac{m^3 - m}{12} \delta_{m+n,0} Z,$$
(1.4)

where *Z* is the central element and $\alpha_k \in \mathbb{C}$. In [26], with the help of the *A*-valued Gelfand–Fuchs cocycle

$$\omega_{\mathcal{A}}(U\partial, V\partial) = \int_{\mathbb{S}^1} U \circ V_{xxx} dx, \tag{1.5}$$

we introduce the Frobenius–Virasoro algebra $\mathfrak{vir}_{A}^{[0]}=W_{\mathcal{A}}\oplus\mathcal{A}$ as an N-dimensional central extension of $W_{\mathcal{A}}$. More precisely,

$$[L_m^i, L_n^j] = (m-n) \sum_{k=1}^N C_k^{ij} L_{m+n}^k + \sum_{k=1}^N C_k^{ij} \frac{m^3 - m}{12} \delta_{m+n,0} Z^k,$$
(1.6)

where Z^k are central elements for $k=1,\ldots,N$. Especially when $\mathcal{A}=\mathcal{F}_2^0$, this is the so-called W(2,2)-algebra [2,10,23]. We remark that $H^2(W_{\mathcal{A}},\mathcal{A})$ if N>1 is not generated by the \mathcal{A} -valued Gelfand–Fuchs cocycle $\omega_{\mathcal{A}}$. An interesting problem is to compute $H^2(W_{\mathcal{A}},\mathcal{A})$.

This paper is organized as follows. In Section 2, we will study all possible central extensions of the Frobenius–Witt algebra W_A and show that

$$H^2(W_A, \mathbb{K}) = \bigoplus_{k=1}^N \mathbb{K} \omega_k, \quad \mathbb{K} = \mathbb{C} \quad \text{or} \quad A,$$

where $\omega_1, \ldots, \omega_N$ are \mathbb{C} -valued basic Gelfand–Fuchs cocycles (see below (2.3)). As a corollary, we obtain a generalized Virasoro algebra

$$\mathfrak{vir}_{\mathcal{A}[\alpha_1,...,\alpha_k]} = \bigoplus_{m \in \mathbb{Z}} \bigoplus_{i=1}^N \mathbb{C} L_m^i \bigoplus_{k=1}^N \mathbb{C} Z^k$$

equipped with the commutation relation:

$$[L_m^i, L_n^j] = (m-n) \sum_{k=1}^N C_k^{ij} L_{m+n}^k + \sum_{k=1}^N \alpha_k C_k^{ij} \frac{m^3 - m}{12} \delta_{m+n,0} Z^k,$$
(1.7)

where Z^k are central elements and $\alpha_k \in \mathbb{C}$ for $k=1,\ldots,N$. In Section 3, we will propose a multi-component Frobenius–Virasoro algebra $\operatorname{vir}_{\mathcal{A}}^{[n]}$ as another generalization of $\operatorname{vir}_{\mathcal{A}}^{[0]}$ and study its related Euler equations including the \mathcal{A} -valued multi-component KdV equation, the \mathcal{A} -valued multi-component Camassa–Holm equation and the \mathcal{A} -valued multi-component Hunter–Saxton equation.

2. Central extensions of the Frobenius–Witt algebra $W_{\mathcal{A}}$

In this section, we will study all possible central extensions of the Frobenius–Witt algebra W_A defined in (1.1). Let us begin with some definitions.

Definition 2.1. A Frobenius algebra $\mathcal{A} := \{\mathcal{A}, \operatorname{tr}_{\mathcal{A}}, \mathbf{1}_{\mathcal{A}}, \circ\}$ over \mathbb{C} is a free \mathbb{C} -module \mathcal{A} of a finite rank N, equipped with a commutative \mathbb{C} and associative multiplication \mathbb{C} and a unit $\mathbf{1}_{\mathcal{A}}$, and a \mathbb{C} -linear form $\operatorname{tr}_{\mathcal{A}} : \mathcal{A} \to \mathbb{C}$ whose kernel contains no nontrivial ideas.

¹ Generally (e.g., [17]), the Frobenius algebra does not require the commutativity. For our purpose, we always assume that it is commutative [21,22,26].

Download English Version:

https://daneshyari.com/en/article/11017283

Download Persian Version:

https://daneshyari.com/article/11017283

Daneshyari.com