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H I G H L I G H T S

• Random forest regression is proposed for on-line battery capacity estimation.• The estimation is developed from partial charging voltage-capacity data.• Two features indicative of battery capacity fade are extracted from charging curves.• An incremental capacity analysis is used for assisting battery feature selection.
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A B S T R A C T

Machine-learning based methods have been widely used for battery health state monitoring. However, the ex-
isting studies require sophisticated data processing for feature extraction, thereby complicating the im-
plementation in battery management systems. This paper proposes a machine-learning technique, random forest
regression, for battery capacity estimation. The proposed technique is able to learn the dependency of the battery
capacity on the features that are extracted from the charging voltage and capacity measurements. The random
forest regression is solely based on signals, such as the measured current, voltage and time, that are available
onboard during typical battery operation. The collected raw data can be directly fed into the trained model
without any pre-processing, leading to a low computational cost. The incremental capacity analysis is employed
for the feature selection. The developed method is applied and validated on lithium nickel manganese cobalt
oxide batteries with different ageing patterns. Experimental results show that the proposed technique is able to
evaluate the health states of different batteries under varied cycling conditions with a root-mean-square error of
less than 1.3% and a low computational requirement. Therefore, the proposed method is promising for online
battery capacity estimation.

1. Introduction

Lithium-ion batteries (LIBs) have been widely applied as energy
storage systems, such as the fields of electrified vehicles and power
grids. The biggest concern about these batteries is their limited lifetime,
as their performance deteriorates with usage. To prolong a battery’s
longevity while ensuring reliability over the entire service life, accurate
diagnosis of the state of health (SOH) in real-time is essential. The SOH
reflects the current capability of a battery to store and supply energy
relative to that at the beginning of its life and is an indicator to evaluate

the degradation level of batteries. Quantitatively, it can be calculated
by the ratio of the actual cell capacity to its initial value.
Extensive research efforts have been dedicated to SOH monitoring

since the last decades, resulting in different online estimation methods.
These SOH monitoring techniques can be categorized into two types,
namely electrical model-based and data-driven approaches. Electrical
models use passive electrical components, such as resistors and capa-
citors, to simulate the behavior of a battery. Enabled by these models,
recursive Bayesian state estimation algorithms (such as the extended
Kalman filter, EKF) [1,2] and particle filter (PF) [3,4] have been
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adopted to identify and update SOH related model parameters, e.g.,
capacity and internal resistance, according to data acquired during
operation. Most of these filters were implemented in a joint/dual con-
figuration for the co-estimation problem of the state of charge (SOC)
and capacity. For example, Plett [1] pioneered the concurrent use of
two EKFs for SOC and SOH estimation. At each time step, the results of
each EKF were calculated separately and then fed into its counterpart.
Zou et al. [2] proposed a general multi-timescale estimation algorithm
with rigorous stability analysis and then applied it to estimate battery
SOC and SOH. To further improve the estimation accuracy, Schwunk
et al. [3] introduced PF for battery state estimation. Although the class
of electrical model-based methods can effectively estimate the capacity
under certain conditions, these techniques suffer from intensive com-
putation required by a large number of matrix operations, thereby
hindering their real-time application in battery management systems
(BMSs). Data-driven methods rely on a significant amount of statistical
data to predict battery ageing behavior. Because physical insights and
mathematical models with a set of parameters are not needed, these
methods have potential to significantly reduce the computational time
in comparison with electrical model-based approaches.
One of the most widely used data-driven techniques is incremental

capacity/differential voltage (IC/DV) analysis. The IC/DV analysis has
proven to be a powerful tool for battery capacity estimation [5]. IC is
calculated by differentiating the change in battery capacity to the
change in terminal voltage during either charging or discharging, while
DV is defined as the inverse of IC. With this method, the voltage pla-
teaus on charging/discharging curves can be transformed into clearly
identifiable peaks on IC/DV curves. Each peak of the curve represents a
specific electrochemical process taking place in the cell and can be
characterized by features such as the intensity and position [6]. These
peak features are closely related to battery capacity fade and can
therefore be used as indicators for the SOH estimation. Weng et al. [7]
estimated the battery SOH by relating it to the peak intensity of IC
curves. Li et al. [8] established a linear regression relationship between
battery capacity and the peak position on IC curves. However, IC/DV
curves are sensitive to measurement noise inherent in battery systems
[8,9]. Accordingly, proper smoothing methods have to be proposed for
obtaining smooth curves that facilitate identification and evaluation of
IC/DV curve features.
In addition to the IC/DV analysis, a wealth of machine learning

techniques have been devised for battery SOH estimation, such as ar-
tificial neural network (ANN) [10,11], support vector machine (SVM)
[12,13], regressive vector machine (RVM) [14] and Gaussian process
regression (GPR) [15,16]. These SOH estimators are trained until they
learn the complex mapping from the feature space to the capacity
measurement space. To estimate battery SOH accurately, a critical step
in machine learning algorithms is to process the data, such as measured
current, voltage, and temperature, to effectively extract representative
and necessary features of the battery ageing process. In general, these
features can be categorized into: internal features, processed external
features, and direct external features.
In details, the internal features, like battery internal resistance, ca-

pacitance and battery SOC, cannot be measured directly from BMS
sensors and must resort to parameter/state estimation algorithms. Pan
et al. [17] developed an extreme learning-machine-based method for
battery capacity estimation, in which parameters of an electrical model,
i.e., internal ohmic resistance and polarization resistance, were con-
sidered as the input data. Then, they identified these model parameters
in real-time using a recursive least square algorithm. In comparison, the
processed external features, e.g., peak position and intensity, are ex-
tracted from differential charging curves, like IC/DV curves [18,19] and
voltage gradient curves [10,16]. Berecibar et al. [19] estimated cell
capacity with a selection of features from IC/DV curves by using three
different regression methods, namely linear regression, ANN and SVM.
Similar work has been conducted by Wang et al. [18] with the aid of
GPR. Wu et al. [10] trained a polynomial neural network based on the

arc length and curvature from voltage velocity curves, and established
the relation between the geometric properties of charging curves and
the battery capacity. Different to the above two types of features, the
direct external features are directly recorded in BMSs during battery
operation, typically including the measured terminal voltage, current,
and surface temperature. Hu et al. [14] applied an RVM algorithm to
learn the complex dependency of the battery capacity on characteristic
features extracted from voltage and current measurements during
charging operation. Recently, Richardson et al. [15] proposed a capa-
city estimation algorithm by using GPR based on a small portion of
charging voltage–time data under a constant current. They selected a
subset of the smoothed data from the charging voltage curve as the
model input to reduce the computational cost. Among all these input
features used for model training, the direct external features are the
easiest to obtain.
Due to the limited computational capability of the present BMSs,

many features of the batteries are hard to obtain during the actual
operation. A state monitoring method which can directly utilize the
measurable features from the BMS for battery SOH estimation is highly
desired. Ideally, the battery modeling and data pre-processing steps
should be avoided to reduce computational efforts. Motivated by the
correlation between the battery capacity and selected features of IC
curves established in our previous work [8], we seek a method capable
of estimating the battery capacity accurately by directly using partial
charging curves without any pre-derivation or pre-smoothing steps.
Driven by this purpose, this paper proposes a novel statistical learning
method, random forest (RF) regression, to diagnose the SOH of LIB
based on the voltage, current and time measurements during the
charging process. The RF regression, initially presented by Breiman
[20], is one of the most popular supervised machine learning algo-
rithms and has been successfully applied to both classification and re-
gression in many different fields, such as wind power forecast [21],
wheat biomass estimation [22], and spatial prediction of soil organic
carbon [23]. This method has been demonstrated to have the ability of
well approximating variables with nonlinear relationships and also
have high robustness performance against outliers. Despite the ex-
cellent predictive performance and reliable identification of relevant
variables and interactions, few has employed the RF regression for SOH
monitoring of lithium-ion batteries. The present work aims to fill this
gap by proposing an RF regression-based estimation algorithm for on-
line battery capacity estimation. This proposed approach has several
salient characteristics desired for SOH estimation in BMSs. First, it is
able to maintain high accuracy in the absence of any pre-selection of
features, although confronted by significant noise in the predictive
variables. Furthermore, while overfitting can cause inaccurate estima-
tion with new testing data and thus negatively affect the model gen-
erality, the proposed algorithm is sufficiently robust against the over-
fitting phenomena.1 In addition, compared to other machine learning
techniques, e.g., ANN and SVM, it only needs a few tunable parameters
and therefore requires low effort for offline model tuning [20].
The remainder of this article is organized as follows. Section 2

specifies the experiments, including implementation procedures, testing
cells, and equipment. The proposed RF regression technique, feature
selection, and model validation tools are presented in Section 3, fol-
lowed by experimental implementation and discussion of the results in
Section 4. A comparative study of the proposed SOH estimation algo-
rithm and its two benchmarking methods is conducted in Section 5.
Section 6 completes the present work with a concluding summary.

1 A model that over-fits the data means that it is too flexible so that the
isolated structures (e.g., noise) that are specific to the learning set can be
captured erroneously.
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