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H I G H L I G H T S

• Optimal placement of distributed energy storage systems is presented.

• A uniform and non-uniform energy storage system size approaches are employed.

• Artificial bee colony and particle swarm optimization algorithms are applied.

• Voltage profile is improved, and line losses and line loading are minimized.

• Performance indices are evaluated to analyze the system performance.
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A B S T R A C T

The deployment of utility-scale energy storage systems (ESSs) can be a significant avenue for improving the
performance of distribution networks. An optimally placed ESS can reduce power losses and line loading, mi-
tigate peak network demand, improve voltage profile, and in some cases contribute to the network fault level
diagnosis. This paper proposes a strategy for optimal placement of distributed ESSs in distribution networks to
minimize voltage deviation, line loading, and power losses. The optimal placement of distributed ESSs is in-
vestigated in a medium voltage IEEE-33 bus distribution system, which is influenced by a high penetration of
renewable (solar and wind) distributed generation, for two scenarios: (1) with a uniform ESS size and (2) with
non-uniform ESS sizes. System models for the proposed implementations are developed, analyzed, and tested
using DIgSILENT PowerFactory. The artificial bee colony optimization approach is employed to optimize the
objective function parameters through a Python script automating simulation events in PowerFactory. The
optimization results, obtained from the artificial bee colony approach, are also compared with the use of a
particle swarm optimization algorithm. The simulation results suggest that the proposed ESS placement ap-
proach can successfully achieve the objectives of voltage profile improvement, line loading minimization, and
power loss reduction, and thereby significantly improve distribution network performance.

1. Introduction

Present power systems face a period of rapid change driven by
various interrelated issues, e.g., demand management [1], greenhouse
gas (GHG) reduction targets [2], integration of renewables [3,4], power
congestion [5], power quality requirements [6,7], and network ex-
pansion [8] and reliability [6,7]. For distribution networks, an energy
storage system (ESS) converts electrical energy from a power network,
via an external interface, into a form that can be stored and converted
back to electrical energy when needed [9]. Depending on the demand

or cost benefits, the ESS can store energy to produce and discharge
electricity [10]. Consequently, ESSs are increasingly being embedded in
distribution networks to offer technical, economic, and environmental
advantages. These include mitigation of voltage deviation [11,12], fa-
cilitation of renewable energy source (RES) integration [13–15], dis-
tributed generation planning [16] and RES energy time-shifting [17],
load shifting [18–21], load levelling [22] and peak shaving [23], power
quality improvement [5,11,24,25], frequency regulation [5,26], net-
work expansion [27,28] and overall cost reduction [29,30], operating
reserves [5,31], GHG reduction [32–34], profit maximization [5,35],
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and network reliability [36].
Unfortunately, misplacement or misuse of ESSs in distribution

networks can adversely affect network performance [37], voltage and
frequency regulation, power quality, reliability, and load controll-
ability. Appropriate ESS placement can facilitate an optimal ESS op-
eration for voltage and power quality improvement [5,12,24,25],
peak demand mitigation [12], relief of distribution congestion [5,25],
power flow adjustment [5], power loss reduction [12,25], network
reliability [36], overall network cost reduction [36,38], RESs in-
tegration [27,39,40], and system effectiveness [36,41]. As the use of
large-scale ESSs in distribution networks involves substantial invest-
ment, placing ESSs optimally on the basis of performance expecta-
tions is challenging and has been addressed in several studies
[5,11,12,24,25,27,29,30,36,38,39,41–51].

Asset management of distribution networks is an essential task of
network service providers to ensure safe and secure operation of the
networks. However, this can be an expensive task that also might result
in a high network cost and thereby can significantly affect electricity
prices. This cost could include network reinforcement for thermal and

voltage stability. Therefore, the motivation of this work is to provide
low cost solutions to distribution network operators for a better asset
management practice.

A comprehensive review, regarding ESS placement to mitigate the
issues of distribution networks, is presented in [9]. An optimal alloca-
tion and sizing of ESSs, for an IEEE-30 wind power distribution system,
is accomplished in [24], while focusing on power system cost mini-
mization and voltage profile improvement. The authors employ a hy-
brid multi-objective particle swarm optimization (PSO) incorporating a
non-dominated sorting genetic algorithm (NSGA-II), a probabilistic
load flow technique, and a five-point estimation method (5PEM).

In [42], a multi-objective ESS allocation is performed for both
transmission and distribution networks. A detailed analysis, termed as
sensitive analysis, is accomplished on the transmission side using
complex-valued neural networks, time domain power flow, and eco-
nomic dispatch to locate the ESSs. On distribution side, the optimal ESS
size is estimated to address load curve smoothing and peak load
shaving. Ref. [41] proposes optimal distributed ESS planning (speci-
fying locations and sizes) in soft open points-based distribution

Nomenclature

t time interval
c ESS charging efficiency
d ESS discharging efficiency
ESS weighting factor for ESS cost
LL line loading cost rate
LL weighting factor for line loading cost
loss power loss cost rate
PL weighting factor for power losses cost
VD voltage deviation cost rate
VD weighting factor for voltage deviation cost
i load weighting factor of ith bus
J C( )Fi objective function which is a function of cost
aP, bP, & cP real power coefficients for phase a, b, & c
aQ, bQ, & cQ reactive power coefficients for phase a, b, & c
CLL

l cost for line loading
CPL

l cost for power losses
CVD

n cost for voltage deviation
CS colony size in ABC optimization
EESS max maximum ESS energy
EESS min minimum ESS energy
EESS ESS energy

+EESS
t 1 ESS energy at time +t 1

EESS
t ESS energy at time t

Iij max current limit of line ij
Iij

t current magnitude through line ij
Itmax maximum number of iterations in ABC optimization
K total number of active ESSs on the network
Ltrial trial limit for improving a food source in ABC optimization
lb1 lower boundary of decision variable SESS

i

lb2 lower boundary of decision variable ESS
i

M total number of lines
N total number of buses
ND number of decision variables in ABC optimization
NFS number of food sources in ABC optimization
PESS max maximum ESS power
PESS min minimum ESS power
PESS ESS power
Pi k

d real power delivered from i to a neighbouring bus k
Pi

c real power consumed at bus i
Pi

g real power generated at bus i
Pj i

d power delivered to i from a neighbouring bus j
PL base

l real power loss for base case (without ESS)
PL ESS

l real power loss with optimal ESS placement

PLT total real power loss
P i j( , )L real power loss of a line connecting two buses, i and j
PESS c

t
, ESS charging power at time t

PESS d
t

, ESS discharging power at time t
PESS

t ESS power at time t
PLRIP real power loss reduction index with optimal ESS place-

ment
PLRIQ reactive power loss reduction index with optimal ESS

placement
PLRIT total power loss reduction index with optimal ESS place-

ment
Qi k

d reactive power delivered from i to a neighbouring bus k
Qi

c reactive power consumed at bus i
Qi

g reactive power generated at bus i
Qj i

d reactive power delivered to i from a neighbour bus j
QL base

l reactive power loss for base case (without ESS)
QL ESS

l reactive power loss with optimal ESS placement
QLT total reactive power loss
Q i j( , )L reactive power loss of a line connecting two buses, i and j
R i j( , )L resistance of a line connecting two buses, i and j
SESS max maximum ESS size
SESS min minimum ESS size
SLi load at bus i in p.u.
Swind total capacity (kVA) of wind DG
SLl t loading of line l
SLbase

l loading of line l without ESS placement
SLESS

l loading of line l after ESS placement
SLmax

l maximum loading of line l
SLrated

l rated ampacity of line l
SOCESS

k state of charge of kth ESS
ub1 upper boundary of decision variable SESS

i

ub2 upper boundary of decision variable ESS
i

UUC ultrabattery unit cost
Vbi bus voltage of ith bus in per unit (p.u.)
Vbi

t voltage magnitude at different times t in a day
+Vi positive sequence voltage

Vi negative sequence voltage
Vmax upper voltage limit
Vmin lower voltage limit
Vrated rated voltage of the system in p.u.
Vref reference bus voltage in p.u.
Vtarget target voltage of the system
VUFmax maximum VUF
X i j( , )L reactance of a line connecting two buses, i and j
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