Accepted Manuscript

Accepted date:

Title: Catalytic reduction of NO by CO over B-site partially substituted $LaM_{0.25}Co_{0.75}O_3$ (M = Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance

Authors: Yaohui Wu, Lulu Li, Bingxian Chu, Yunan Yi, Zuzeng Qin, Minguang Fan, Qiuju Qin, Haixiang He, Lingling Zhang, Lihui Dong, Bin Li, Lin Dong

22-9-2018

PII:	S0926-860X(18)30483-6
DOI:	https://doi.org/10.1016/j.apcata.2018.09.022
Reference:	APCATA 16822
To appear in:	Applied Catalysis A: General
Received date:	14-7-2018
Revised date:	17-9-2018

Please cite this article as: Wu Y, Li L, Chu B, Yi Y, Qin Z, Fan M, Qin Q, He H, Zhang L, Dong L, Li B, Dong L, Catalytic reduction of NO by CO over B-site partially substituted $LaM_{0.25}Co_{0.75}O_3$ (M = Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance, *Applied Catalysis A, General* (2018), https://doi.org/10.1016/j.apcata.2018.09.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Catalytic reduction of NO by CO over B-site partially substituted LaM_{0.25}Co_{0.75}O₃ (M = Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance

Yaohui Wu^a, Lulu Li^a, Bingxian Chu^a, Yunan Yi^a, Zuzeng Qin^a, Minguang Fan^a, Qiuju Qin^a, Haixiang He^a, Lingling Zhang^c, Lihui Dong^{*,a,b}, Bin Li^{*,a,b}, Lin Dong^b

^aGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China

^bJiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China

^cSchool of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P. R. China

Highlights

- The impact of B-site partial substitution and the reaction mechanism of LaM_{0.25}Co_{0.75}O₃ (M = Cu, Mn, Fe) perovskites are first presented in NO reduction by CO
- Partial substitution of copper obviously reduces the impact of the restriction for CO adsorption by NO preferential adsorption on LaCoO₃ catalyst
- With partial substitution of foreign cations, perovskite structure of LaCoO₃ is maintained effectively with enhanced catalytic performance
- Reduction property and content of oxygen defect sites in partially substituted catalysts are the key factors for catalytic performance

Abstract

The current work mainly focuses on exploring the impact of B-site partial substitution on the physico-chemical property and the catalytic performance of $LaM_{0.25}Co_{0.75}O_3$ (M = Cu, Mn, Fe) perovskites for the catalytic reduction of NO by CO. Measurements are applied to characterize the gained catalysts, including XRD, N₂-physisorption (BET), H₂-TPR, O₂-TPD, ICP-AES, XPS and *In situ* DRIFTS. The results are listed below: (1) with partial substitution of foreign cations, the perovskite structure of LaCoO₃ is maintained effectively with improved catalytic performance; (2) the reduction property and content of oxygen defect sites of partial substituted catalysts are the key factors for the improved catalytic performance; (3) the partial substitution of copper obviously reduces the impact of the restriction for CO adsorption by NO preferential adsorption on LaCoO₃ catalyst; (4) the partial substitution of copper distinctly promotes the reducing capacity and adsorption of gaseous O₂ for LaCoO₃. Besides, taking LaCu_{0.25}Co_{0.75}O₃ catalyst as an example, a reliable catalytic model is tentatively put forward to thoroughly exploring the reaction

Download English Version:

https://daneshyari.com/en/article/11017590

Download Persian Version:

https://daneshyari.com/article/11017590

Daneshyari.com