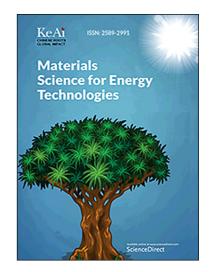
## Accepted Manuscript

Catalytic soot oxidation activity of Cr-doped Ceria (Ce  $_{I-x}$  Cr  $_x$  O $_{2-\delta}$ ) synthesized by sol-gel method with organic additives

Satya Deepika Neelapala, Harshini Dasari


PII: S2589-2991(18)30042-9

DOI: https://doi.org/10.1016/j.mset.2018.06.009

Reference: MSET 19

To appear in: Materials Science for Energy Technologies

Received Date: 9 June 2018 Revised Date: 29 June 2018 Accepted Date: 29 June 2018



Please cite this article as: S.D. Neelapala, H. Dasari, Catalytic soot oxidation activity of Cr-doped Ceria (Ce  $_{I-x}$  Cr  $_x$  O $_{2-\delta}$ ) synthesized by sol-gel method with organic additives, *Materials Science for Energy Technologies* (2018), doi: https://doi.org/10.1016/j.mset.2018.06.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Catalytic soot oxidation activity of Cr-doped Ceria (Ce<sub>1-x</sub>Cr<sub>x</sub>O<sub>2-δ</sub>) synthesized

by sol-gel method with organic additives

Satya Deepika Neelapala and Harshini Dasari

Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of

Higher Education, Karnataka, India.

Abstract

Cr-doped ceria catalysts ( $Ce_{1-x}Cr_xO_{2-\delta}$ : x=0.05 to 0.25) were prepared by sol-gel synthesis using

glucose and fructose as organic additives. The structural and morphological properties were

investigated by XRD, BET surface area, Raman and SEM analysis. Catalytic soot oxidation

activity of the samples was analyzed by thermogravimetric analysis. XRD results established the

evidence for the formation of  $Ce_{I-x}Cr_xO_{2-\delta}$  solid solutions and  $Cr_2O_3$  formation had taken place

when the dopant level is  $x \ge 0.15$ . Pure ceria possessed higher surface area when compared to

Cr-doped samples due to agglomeration as evidenced by SEM analysis. Raman analysis proved

the formation of fluorite phase and also oxygen vacancies. Among the synthesized catalysts pure

and Cr-doped exhibited superior catalytic activities when compared to uncatalysed soot. These

materials can be used for fabricating effective DPF regeneration systems which require lesser

energy consumption.

*Keywords:*  $Ce_{1-x}Cr_xO_{2-\delta}$ , Oxygen vacancies, Soot Oxidation.

\*AUTHOR FOR CORRESPONDENCE:

Tel.: +91 9177304954;

E-mail addresses: harshini.dasari@manipal.edu.

## Download English Version:

## https://daneshyari.com/en/article/11017626

Download Persian Version:

https://daneshyari.com/article/11017626

<u>Daneshyari.com</u>