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Keywords: This work deals with the antimaximum principle for the discrete Neumann and Dirichlet
Difference equations problem

Discrete p-Laplacian

Maximum principle —App(Au(k—1)) = am(k)[u(k)|P~2u(k) + h(k) in [1,n].

Antimaximum principle . .

Eigenvalue We prove the existence of three real numbers 0 <a <b < c such that, if A € ]a, b[, every so-

Eigenfunction lution u of this problem is strictly positive (maximum principle), if A  |b, [, every solution
u of this problem is strictly negative (antimaximum principle) and if A = b, the problem
has no solution. Moreover these three real numbers are optimal.

© 2018 Published by Elsevier Inc.

1. Introduction

This paper is concerned with the Neumann or Dirichlet problem
—App(Auk — 1)) = am(k)|u(k)|P-2u(k) + h(k) in [1,n],

where n is an integer greater than or equal to 1, [1, n] is the discrete interval {1,...,n}, Au(k) :=u(k+1) —u(k) is the
forward difference operator, ¢p(s) = |s|p"zs, 1 <p<oo, h function defined on [1, n] and m changes sign in [1, n] . The
original form for the antimaximum principle concerns the continuous problem

—Apu = Am(x)|u|’?u+h(x) in Q,Bu =0 on <,

where Q is a bounded domain in R, Apu:= div(|Vu|"’2Vu), is the p-Laplacian and Bu = 0 represents either the Dirich-
let or the Neumann homogeneous boundary conditions (see [5]). The argument here uses a discrete forme of Picone’s iden-
tity (see [3]). Some of our arguments are inspired by [2,6]. In an article submitted [7], we studied the existence and nonex-
istence of positive solution and its uniqueness depending on the sign of }°;_; m(k) and on whether or not A belongs to
10, (m)[ in the Neumann case, and depending whether or not A belongs to |A_;(m), A;(m)[ in the Dirichlet case, where
u(m), Aq(m) and A_;(m) are defined in (2.6) and (2.10). To give an idea of our results, let us consider the Neumann prob-
lem (2.1), with }°}_; m(k) <0, we show that the antimaximum principle (in brief AMP) holds at the right of x(m) and
the left of 0. Moreover, it is uniform and the intervals of uniformity are exactly u(m) <A <u*(m) and —pu*(-m) < A <0,
where p*(m) is defined in (3.1). We will also observe that the AMP cannot hold far away to the right of w*(m) or to the left
of —u*(—m).

We do the same for the Dirichlet problem (2.8), with Yj_; m(k) <0, we show that the AMP holds at the right of
A1(m) and the left of A_;(m). Moreover, it is uniform and the intervals of uniformity are exactly A;(m)<A <A*(m) and

* Corresponding author.
E-mail address: chehbmed@gmail.com (M. Chehabi).

https://doi.org/10.1016/j.amc.2018.09.012
0096-3003/© 2018 Published by Elsevier Inc.


https://doi.org/10.1016/j.amc.2018.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.09.012&domain=pdf
mailto:chehbmed@gmail.com
https://doi.org/10.1016/j.amc.2018.09.012

H. Chehabi et al./Applied Mathematics and Computation 342 (2019) 112-117 113

—A*(—=m) < A < A_1(m), where A*(m) is defined in (4.1). We will also observe that the AMP cannot hold far away to the
right of A*(m) or to the left of —A*(—m).

2. Preliminaries

Consider the Neumann problem

{ —Agy(Au(k — 1)) = am(k)|u(k)|P~2u(k) + h(k) in [1,n], 1)
Au(0) = Au(n) =0.
Suppose that

dkq, ko € [1,n]; m(ky)m(ky) < O. (2.2)
Also, without loss of generality, we can assume that

Im(k)| <1, Vke|[l,n]. (2.3)

The class W={u:[0,n+1]—-R ; Au(0)=Au(n)=0} is an n-dimensional space under the norm |ul| =

(it lul PP,

Consider the nonlinear eigenvalue Neumann problem

{A(pp(Au(k 1) = am(k)|uk)|P-2u(k)) in [1,n], (2.4)
Au(0) = Au(n) =0. )
Proposition 2.1. Let u be a solution of
{—A(pp(Au(k—1))+ao(k)|u(k)|1’Zu(k) =h(k) in [1,n], (2.5)
Au(0) = Au(n) =0, '

where ag>0 and h = 0. Then u> 0 in [1, n].

Proof. Writing u = u™ —u~ with u* = max{+u, 0} and taking —u~ as testing function in (2.5),

Y p(Autk— 1)) Au (k- 1)+ 3 ap(k)[u~ (K)[? = 3" h(kyu~ (k).

k=1 k=1 k=1
Distinguishing the cases of sign of u(k —1) and u(k), we prove that

Zn: |[Au=(k—1)|P < —i(pp(Au(k— 1))Au (k—-1),

k=1 k=1
then

S Au (k= DP + Y ao()u~ ()P < — 3 hikyu- (k) <0,

k=1 k=1 k=1

therefore Y p_; |[Au=(k—1)|P =0 and u~ is constant. If u= #0, since Y} j_; h(k)u=(k) =0, then h=0 which is absurd.
Thus u>0.
On the other hand, if u(kg) =0 for some kg € [1,n], then Au(kg) =u(kg+1) >0 and Au(kyg—1) = —-u(kg—1) <0,
s0 @p(Au(kg))>0 and @p(Au(kg —1)) <0 . As —@p(Au(ke)) + @p(Au(ky — 1)) + ag (ko) (u(ko))P~1 = h(ko) > 0, then 0 <
op(Au(ko)) < pp(Au(kg—1)) <0, from where u(kg+1) =u(ko—1)=0 and so on, we prove u=0, which contradicts
h+£0. O

Corollary 2.2. If u=0 is a solution of (2.1) with h>0, then u> 0.
Proof. By writing Eq. (2.1) as
—A@p(Aulk — 1)) £ Aluk)|P~2u(k) = A(m(k) + 1) |uk)|P~2u(k) + h(k),
and using (2.3); (here + is used if A >0, - if A <0), we conclude by Proposition 2.1. O

The following expression will play a central role in our approach:

n n
p(m) :=inf1 > |Au(k—1)[P: ueW and Y m(k)|uk)|P=1¢. (2.6)
k=1 k=1
Proposition 2.3. (i) Suppose that Y"}_; m(k) <0 . Then p(m)> 0, every eigenfunction with u(m) of (2.4) does not change sign

in [1, n] and does not vanish in [1, n], and u(m) is the unique nonzero principal eigenvalue of (2.4); moreover, the interval 10,
u(m)[ does not contain any eigenvalue of (2.4).
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