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This work deals with the antimaximum principle for the discrete Neumann and Dirichlet 

problem 

−�ϕ p (�u (k − 1)) = λm (k ) | u (k ) | p−2 u (k ) + h (k ) in [1 , n ] . 

We prove the existence of three real numbers 0 ≤ a < b < c such that, if λ∈ ] a , b [, every so- 

lution u of this problem is strictly positive (maximum principle), if λ∈ ] b , c [, every solution 

u of this problem is strictly negative (antimaximum principle) and if λ = b, the problem 

has no solution. Moreover these three real numbers are optimal. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

This paper is concerned with the Neumann or Dirichlet problem 

−�ϕ p (�u (k − 1)) = λm (k ) | u (k ) | p−2 u (k ) + h (k ) in [1 , n ] , 

where n is an integer greater than or equal to 1, [1, n ] is the discrete interval { 1 , . . . , n } , �u (k ) := u (k + 1) − u (k ) is the 

forward difference operator, ϕ p (s ) = | s | p−2 s, 1 < p < ∞ , h function defined on [1, n ] and m changes sign in [1, n ] . The 

original form for the antimaximum principle concerns the continuous problem 

−�p u = λm (x ) | u | p−2 u + h (x ) in �, Bu = 0 on ∂�, 

where � is a bounded domain in R 

N , �p u := di v ( | ∇u | p−2 ∇u ) , is the p -Laplacian and Bu = 0 represents either the Dirich- 

let or the Neumann homogeneous boundary conditions (see [5] ). The argument here uses a discrete forme of Picone’s iden- 

tity (see [3] ). Some of our arguments are inspired by [2,6] . In an article submitted [7] , we studied the existence and nonex- 

istence of positive solution and its uniqueness depending on the sign of 
∑ n 

k =1 m (k ) and on whether or not λ belongs to 

]0, μ( m )[ in the Neumann case, and depending whether or not λ belongs to ] λ−1 (m ) , λ1 (m )[ in the Dirichlet case, where 

μ( m ), λ1 ( m ) and λ−1 (m ) are defined in (2.6) and (2.10) . To give an idea of our results, let us consider the Neumann prob- 

lem (2.1) , with 

∑ n 
k =1 m (k ) ≤ 0 , we show that the antimaximum principle (in brief AMP) holds at the right of μ( m ) and 

the left of 0. Moreover, it is uniform and the intervals of uniformity are exactly μ( m ) < λ< μ∗( m ) and −μ∗(−m ) < λ < 0 , 

where μ∗( m ) is defined in (3.1) . We will also observe that the AMP cannot hold far away to the right of μ∗( m ) or to the left 

of −μ∗(−m ) . 

We do the same for the Dirichlet problem (2.8) , with 

∑ n 
k =1 m (k ) ≤ 0 , we show that the AMP holds at the right of 

λ1 ( m ) and the left of λ−1 (m ) . Moreover, it is uniform and the intervals of uniformity are exactly λ1 ( m ) < λ< λ∗( m ) and 
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−λ∗(−m ) < λ < λ−1 (m ) , where λ∗( m ) is defined in (4.1) . We will also observe that the AMP cannot hold far away to the 

right of λ∗( m ) or to the left of −λ∗(−m ) . 

2. Preliminaries 

Consider the Neumann problem {
−�ϕ p (�u (k − 1)) = λm (k ) | u (k ) | p−2 u (k ) + h (k ) in [1 , n ] , 
�u (0) = �u (n ) = 0 . 

(2.1) 

Suppose that 

∃ k 1 , k 2 ∈ [1 , n ] ; m (k 1 ) m (k 2 ) < 0 . (2.2) 

Also, without loss of generality, we can assume that 

| m (k ) | < 1 , ∀ k ∈ [1 , n ] . (2.3) 

The class W = { u : [0 , n + 1] → R ; �u (0) = �u (n ) = 0 } is an n -dimensional space under the norm ‖ u ‖ = 

( 
∑ n 

k =1 | u (k ) | p ) 1 /p . 

Consider the nonlinear eigenvalue Neumann problem {
−�ϕ p (�u (k − 1)) = λm (k ) | u (k ) | p−2 u (k )) in [1 , n ] , 
�u (0) = �u (n ) = 0 . 

(2.4) 

Proposition 2.1. Let u be a solution of {
−�ϕ p (�u (k − 1)) + a 0 (k ) | u (k ) | p−2 u (k ) = h (k ) in [1 , n ] , 
�u (0) = �u (n ) = 0 , 

(2.5) 

where a 0 ≥ 0 and h � 0 . Then u > 0 in [1, n ] . 

Proof. Writing u = u + − u − with u ± = max {±u, 0 } and taking −u − as testing function in (2.5) , 

−
n ∑ 

k =1 

ϕ p (�u (k − 1))�u 

−(k − 1) + 

n ∑ 

k =1 

a 0 (k ) | u 

−(k ) | p = −
n ∑ 

k =1 

h (k ) u 

−(k ) . 

Distinguishing the cases of sign of u (k − 1) and u ( k ), we prove that 

n ∑ 

k =1 

| �u 

−(k − 1) | p ≤ −
n ∑ 

k =1 

ϕ p (�u (k − 1))�u 

−(k − 1) , 

then 

n ∑ 

k =1 

| �u 

−(k − 1) | p + 

n ∑ 

k =1 

a 0 (k ) | u 

−(k ) | p ≤ −
n ∑ 

k =1 

h (k ) u 

−(k ) ≤ 0 , 

therefore 
∑ n 

k =1 | �u −(k − 1) | p = 0 and u − is constant. If u − � = 0 , since 
∑ n 

k =1 h (k ) u −(k ) = 0 , then h ≡ 0 which is absurd. 

Thus u ≥ 0. 

On the other hand, if u (k 0 ) = 0 for some k 0 ∈ [1 , n ] , then �u (k 0 ) = u (k 0 + 1) ≥ 0 and �u (k 0 − 1) = −u (k 0 − 1) ≤ 0 , 

so ϕp ( �u ( k 0 )) ≥ 0 and ϕ p (�u (k 0 − 1)) ≤ 0 . As −ϕ p (�u (k 0 )) + ϕ p (�u (k 0 − 1)) + a 0 (k 0 )(u (k 0 )) 
p−1 = h (k 0 ) ≥ 0 , then 0 ≤

ϕ p (�u (k 0 )) ≤ ϕ p (�u (k 0 − 1)) ≤ 0 , from where u (k 0 + 1) = u (k 0 − 1) = 0 and so on, we prove u ≡ 0, which contradicts 

h � = 0. �

Corollary 2.2. If u �0 is a solution of (2.1) with h ≥ 0, then u > 0 . 

Proof. By writing Eq. (2.1) as 

−�ϕ p (�u (k − 1)) ± λ| u (k ) | p−2 u (k ) = λ(m (k ) ± 1) | u (k ) | p−2 u (k ) + h (k ) , 

and using (2.3) ; (here + is used if λ≥ 0, - if λ< 0), we conclude by Proposition 2.1 . �

The following expression will play a central role in our approach: 

μ(m ) := inf 

{ 

n ∑ 

k =1 

| �u (k − 1) | p : u ∈ W and 

n ∑ 

k =1 

m (k ) | u (k ) | p = 1 

} 

. (2.6) 

Proposition 2.3. (i) Suppose that 
∑ n 

k =1 m (k ) < 0 . Then μ( m ) > 0, every eigenfunction with μ( m ) of (2.4) does not change sign 

in [1, n ] and does not vanish in [1, n ], and μ( m ) is the unique nonzero principal eigenvalue of (2.4) ; moreover, the interval ]0, 

μ( m )[ does not contain any eigenvalue of (2.4) . 
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