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a b s t r a c t 

Fractional order diffusion equations are generalizations of classical diffusion equations, 

treating super-diffusive flow processes. The paper presents a meshless method based on 

spatial trial spaces spanned by the radial basis functions (RBFs) for the numerical solu- 

tion of a class of initial-boundary value fractional diffusion equations with variable coeffi- 

cients on a finite domain. The space fractional derivatives are defined by using Riemann–

Liouville fractional derivative. We first provide Riemann–Liouville fractional derivatives for 

the five kinds of RBFs, including the Powers, Gaussian, Multiquadric, Matérn and Thin-plate 

splines, in one dimension. The time-dependent fractional diffusion equation is discretized 

in space with the RBF collocation method and the remaining system of ordinary differen- 

tial equations (ODEs) is advanced in time with an ODE method using a method of lines 

approach. Some numerical results are given in order to demonstrate the efficiency and 

accuracy of the method. Additionally, some physical properties of this fractional diffusion 

system are simulated, which further confirm the effectiveness of our method. The stabil- 

ity of the linear systems arising from discretizing Riemann–Liouville fractional differential 

operator with RBFs is also analysed. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The basic idea behind fractional calculus has a history similar to that of more classical calculus and the topic has attracted 

the interests of mathematicians who contributed fundamentally to the development of classical calculus [6] . During the last 

decade, fractional calculus emerges increasingly as a tool for the description of a broad range of non-classical phenomena in 

the applied sciences and engineering. Fractional-order differential operators have been used to model a wide range of prob- 

lems in surface and subsurface hydrology [1,2,22,58,59] , plasma turbulence [19,20] , finance [8,67] , epidemiology [4,35] and 

ecology [12,33] . 

Diffusion processes in complex systems are often observed to deviate from standard laws. The discrepancies can occur 

both for the time relaxation that can deviate from the classical exponential pattern and for the spatial diffusion that can 

deviate from Ficks second law. The resulting diffusion processes are no longer Brownian and cannot be represented accu- 

rately by a second-order diffusion equation. This phenomenon is called anomalous diffusion, which is characterized by the 
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nonlinear growth of the mean square displacement, of a diffusion particle over time. The anomalous diffusions differ ac- 

cording to the values of α, where α is the order of the fractional derivative. The fractional diffusion equation is compatible 

with observations of plumes in the laboratory and the field. It predicts power law, faster than linear scaling of the apparent 

plume variance. Moreover, the fractional diffusion equation is the governing equation of all 1-D stable random walks. If the 

walks are not heavy-tailed (i.e., have finite variance), then the classical central limit theorem gives α = 2 [2] . 

With an expanding range of applications and models based on fractional calculus comes a need for the development of 

robust and accurate computational methods for solving these equations. Publications on the numerical schemes for solving 

spatial fractional PDEs, are relatively sparse, and the majority of the publications are based on finite difference methods 

[9,42,45,4 8,4 9,72–75] . Some other numerical schemes using low-order finite elements [21,29,36,63] , discontinuous Galerkin 

time stepping method [47] , matrix transfer technique [38] , point interpolation method [46] , dual reciprocity boundary inte- 

gral equation technique [16] , homotopy analysis method [15] , and spectral methods [13] have also been proposed. 

One of the key issues with fractional diffusion models is the design of efficient numerical schemes for the space and 

time discretization. Until now, most models have relied on the finite difference method to discretize both the fractional- 

order space diffusion term [42,4 8,4 9,72–74] and time derivative [11,44,61] . Some numerical schemes using low-order finite 

elements have also been proposed [29,36,63] . Some works providing an introduction to fractional calculus related to diffu- 

sion problems are, for instance, [1,32,50,51,71,74,77] . In this work, we will be interested in the superdiffusion, for 1 < α ≤ 2 

and experimental evidence of this type of diffusion is already reported in several works [2,37,58,78] . Since fractional deriva- 

tives are non-local operators, finite difference and finite element schemes generate large and full coefficient matrices. One 

approach is to discretize these non-local differential operators with non-local numerical methods. Following that approach, 

Hanert has proposed a pseudo-spectral method based on Chebyshev basis functions in space and Mittag–Leffler basis func- 

tions in time to discretize the space-time fractional diffusion equation [34] . A similar approach has been followed by Li 

and Xu to discretize the time-fractional diffusion equation with a Jacobi pseudo-spectral method [43] . Recently, Xu and 

Hesthaven proposed stable multi-domain spectral penalty methods for solving fractional PDEs [76] . 

Unlike traditional numerical methods for solving differential equations, meshless methods need no mesh genera- 

tion, which is the major problem in finite difference, finite element and spectral methods [53–56,62,64,70] . Radial ba- 

sis functions methods are truly meshless and simple enough to allow modelling of rather high dimensional problems 

[14,18,31,39,56,62,64] . These methods can be very efficient numerical schemes to discretize non-local operators like frac- 

tional differential operators. These basis functions can be clustered in a specific region to locally increase the accuracy of 

the method. On the other hand, the basis functions used in the RBF expansion are high-order functions that span the entire 

domain like with the pseudo-spectral method. It was shown that RBFs converge to pseudo-spectral methods in their flat 

radial function limit, making RBFs a generalization to pseudo-spectral methods, for scattered nodes and non-flat radial func- 

tions [26] . RBFs have several advantages over spectral/pseudo spectral methods: in addition to offering a flexibility in terms 

of the shape of the domain, they allow a local node refinement, and an easy generalization to higher dimensions. Recently, 

Piret and Hanert [60] proposed a Guassian RBF discretization for the one-dimensional space-fractional diffusion equations. 

For time-dependent PDEs, meshless kernel-based methods are based on a fixed spatial interpolation, but since the coef- 

ficients are time-dependent, one obtains a system of ODEs. This is the well-known method of lines , and it turned out to be 

accurate in several problems [17,23,53] . 

In this paper, we first provide the required formulas for the Riemann–Liouville fractional derivative of the five kinds 

of RBFs, including the Powers, Gaussian, Multiquadric, Matérn and Thin-plate splines, in one dimension. Then we consider 

discretizations of the following fractional diffusion equation with the RBF collocation method: 

u t ( x, t ) − d ( x ) D 

α
0 + u ( x, t ) = s ( x, t ) , x ∈ ( a, b ) , t ∈ ( 0 , T ] , 1 < α ≤ 2 , (1) 

with the initial and mixed boundary conditions 

u (x, 0) = φ(x ) , x ∈ [ a, b] , (2) 

β1 u (a, t) + γ1 u x (a, t) = g 1 (t) , t ∈ [0 , T ] , (3) 

β2 u (b, t) + γ2 u x (b, t) = g 2 (t) , t ∈ [0 , T ] , (4) 

where the diffusion coefficient (or diffusivity) d ( x ) > 0. The coefficients β1 , β2 , γ 1 and γ 2 are constant and s , φ, g 1 , and g 2 
are known functions. The parameter α is the order of Riemann–Liouville fractional derivative, for x ∈ [ a, b] , −∞ ≤ a < b ≤ ∞ , 

defined by 

( D 

α
a + f ) ( x ) = 

1 

�(n − α) 

(
d 

dx 

)n ∫ x 

a 

f ( t ) ( x − t ) 
n −α−1 dt, ( x > a, n = [ α] + 1 ) . (5) 

In the case α = 2 , Eq. (1) is the classical diffusion equation. 

The function u ( x , t ) under consideration which is solution of (1) , should be such that the corresponding integral (5) con- 

verges. If the function u ( x , t ) vanishes at infinity, we have absolute convergence of such integrals for a wide class of functions 

[65] . However, these functions do not necessarily need to vanish at infinity and we can find under which conditions these 
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