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a b s t r a c t 

Thomas’ necessary conditions for the existence of multiple steady states in gene networks have been 

proved by Soulé with high generality for dynamical systems defined by differential equations. When ap- 

plied to (protein) reaction networks however, those conditions do not provide information since they are 

trivially satisfied as soon as there is a bimolecular or a reversible reaction. Refined graphical require- 

ments have been proposed to deal with such cases. In this paper, we present for the first time a graph 

rewriting algorithm for checking the refined conditions given by Soliman, and evaluate its practical per- 

formance by applying it systematically to the curated branch of the BioModels repository. This algorithm 

analyzes all reaction networks (of size up to 430 species) in less than 0.05 second per network, and per- 

mits to conclude to the absence of multistationarity in 160 networks over 506. The short computation 

times obtained in this graphical approach are in sharp contrast to the Jacobian-based symbolic compu- 

tation approach. We also discuss the case of one extra graphical condition by arc rewiring that allows 

us to conclude on 20 more networks of this benchmark but with a high computational cost. Finally, we 

study with some details the case of phosphorylation cycles and MAPK signalling models which show the 

importance of modelling the intermediate complexations with the enzymes in order to correctly analyze 

the multistationarity capabilities of such biochemical reaction networks. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The wide variety of cells in a multicellular organism show that 

cells with identical copies of DNA may differentiate in different cell 

types. In the late 40’s, Max Delbruck at Caltech suggested that each 

type of cell could correspond to a distinct steady state in the dy- 

namics of their shared gene expression network. In order to ana- 

lyze such large networks, René Thomas conjectured in 1980 that 

the existence of a positive (resp. negative) feedback loop was a 

necessary condition for multistationarity (resp. sustained oscilla- 

tions) Thomas (1981) . Those conjectures were later proved in vari- 

ous formalisms (Boolean or discrete transition systems, differential 

equations) with various degrees of generality. In 2003, Christophe 

Soulé finally proved Thomas’ necessary condition for multistation- 

arity with full generality for dynamical systems defined by differ- 

ential equations ( Soulé, 2003 ). 

In his mathematical formalization of the conjecture, Soulé con- 

siders a differentiable mapping F from a finite dimensional real 
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vector space to itself, and for each point a , the directed graph G ( a ) 

where the arcs are the non-zero entries of the Jacobian matrix of 

F , labeled by their sign. He shows that if F has at least two non- 

degenerate zeroes, there exists a such that G ( a ) has a positive cir- 

cuit. 

When applied to (protein) reaction networks however, Thomas’ 

necessary condition for multistationarity fails short since it is triv- 

ially satisfied as soon as there exists either a bimolecular or a re- 

versible reaction. Indeed, a bimolecular reaction such as a com- 

plexation reaction immediately creates a mutual inhibition be- 

tween the two reactants, i.e. a positive circuit, and a reversible 

reaction produces a mutual activation, i.e. again a positive cir- 

cuit, making Thomas’ necessary condition always true in those net- 

works. 

Nevertheless, reaction models are widespread in computational 

systems biology and it would be very desirable to be able to 

predict the absence of multistationarity by systematically check- 

ing such conditions with efficient algorithms. For instance, the 

BioModels database 1 ~( Chelliah et al., 2013 ) is a repository of more 

than 600 hand-curated models written in the Systems Biology 

1 http://biomodels.net/ . 
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Markup Language (SBML) ( Hucka et al., 2008 ) mostly with reac- 

tion rules, over several tenths or hundred of molecular species. 

There are hundreds more models in the non-curated branch, and 

thousands of models imported from metabolic networks databases 

with even larger numbers of reactions and species. 

Soulé’s proof, as most preceding and following proofs, uses the 

fact that the existence of multiple steady states implies a non- 

injectivity property which is shown to be equivalent to a determi- 

nant being zero for some values of reaction rate constants. One ap- 

proach, called the Jacobian approach, is thus to use symbolic com- 

putation methods to directly compute the roots of that determi- 

nant. If it is non-zero, one can conclude to the absence of multista- 

tionarity. This is the approach taken by Feliu and Wiuf (2013a) . In- 

terestingly, they evaluated their algorithm, implemented in Maple 

16, on the curated branch of BioModels (323 networks in their 

case), showing that 31,6% were injective and that only 8,3% of 

the networks of this benchmark caused memory overflow by that 

method. On the sequences of r phosphorylation cycles of Wang and 

Sontag (2008) , they could check non-injectivity up to r = 17 cycles 

in 1200 s. 

In this paper, we follow the alternative graphical approach to 

multistationarity analyses. We describe a graph rewriting algo- 

rithm which deals with sequences of r = 10 0 0 phosphorylation 

cycles in a second, and analyzes the curated branch of BioMod- 

els (506 networks in our case) with a maximum computation time 

of 50 milliseconds per network (including large networks of size 

up to 430 species), while concluding to the non existence of mul- 

tiple steady states in 160 networks of size up to 54 species in that 

benchmark, i.e. with a similar ratio of 31.6% of results concluding 

to non-multistationarity. 

This algorithm is based on a refinement of the graphi- 

cal requirements of Soulé (2003) given by the third author 

in Soliman (2013) as a necessary condition for the existence of 

multiple steady states in (biochemical) reaction networks. Sim- 

ilar graphical requirements have also been given in Banaji and 

Craciun (2010) without restriction to mass-action law kinetics, 

but to our knowledge, it is the first time that they are imple- 

mented and evaluated systematically in model repositories. For in- 

stance, we are not aware of similar evaluations obtained with the 

Chemical Reaction Network Toolbox 2 for systematically checking 

the graphical conditions for multistationarity of Feinberg’s Chemi- 

cal Reaction Network Theory (CRNT) ( Craciun and Feinberg, 2006; 

Feinberg, 1977 ). 

More specifically, we present a series of graph rewriting 

algorithms for checking the different graphical requirements 

of Soliman (2013) , and analyze their practical performance in the 

curated models of BioModels, in order to: 

• evaluate when the original condition of Thomas allows us to 

rule out multistationarity; 
• evaluate when the following three extra conditions given 

in Soliman (2013) become conclusive, namely: 

1. the positive circuit must not come from twice the same re- 

action; 

2. the positive circuit must not come from a reaction and its 

reverse reaction; 

3. the positive circuit must not involve all species of a conser- 

vation law; 
• evaluate when even stronger conditions based on the rewirings 

detailed in Soulé (2003) and Soliman (2013) are necessary to 

conclude, namely 

1. by sign change of incoming arcs on a set of species, 

2. or by permuting the arcs to a set of target species. 

2 https://crnt.osu.edu/toolbox-history-and-explanation . 

For this study, we used our software modelling environment 

BIOCHAM 

3 ( Calzone et al., 2006; Fages et al., 2017 ) to load all 

models from the curated branch of BioModels, improve their 

writing in SBML with well-formed reactions using the algo- 

rithm described in Fages et al. (2015) , compute the conservation 

laws ( Soliman, 2012 ), compute their influence multigraph labelled 

by the reactions ( Fages et al., 2018; Fages and Soliman, 2008b ) and 

export the labelled multigraph in the Lemon library format 4 . Then 

we used an implementation in C++ of the algorithm presented 

in this paper to search for positive circuits with the different re- 

fined conditions on the labelled influence multigraph, and evaluate 

their respective contributions for the analysis of multistationarity 

in BioModels. All the computation times obtained with this algo- 

rithm given in this paper were obtained on a standalone desktop 

Linux machine with an Intel Xeon 3.6 GHz processor 5 . 

The rest of this article is organized as follows. The next sec- 

tion presents the refined necessary conditions for multistationar- 

ity in reaction networks described in Soliman (2013) and detailed 

here with five levels of conditions. The following section presents a 

graph rewriting algorithm for checking those conditions, and eval- 

uates its computational complexity. Section 4 shows the remark- 

able performance of this algorithm by applying it systematically 

to the curated part of the model repository BioModels, includ- 

ing models out of reach of Jacobian-based symbolic computation 

methods, and details the effect of the five levels of refined condi- 

tions in this benchmark. Section 5.1 considers the models of dou- 

ble phosphorylation cycles of Wang and Sontag (2008) and shows 

a very low quadratic empirical complexity of the graphical algo- 

rithm, again in sharp contrast to symbolic computation methods. 

Section 5.2 focuses on model 270 of ERK signalling that contains 

33 species and 42 reactions resulting in an influence multigraph of 

126 arcs with many positive and negative feedback loops, yet for 

which our graphical algorithm demonstrates the absence of multi- 

stationarity. These examples illustrate the importance of modelling 

the intermediate complexes in enzymatic reactions to obtain mul- 

tiple steady states, and show the sensitivity of both the dynam- 

ical properties of the models and of our graphical conditions to 

the writing of enzymatic reactions with or without intermediate 

complexes. We conclude on the remarkable performance of the 

graphical approach to analyze multistationarity in reaction mod- 

els of large size, and on some perspectives to further improve our 

algorithm and generalize this approach. 

2. Necessary condition for multistationarity in reaction 

networks 

Let us consider a biochemical reaction system with n 

species S 1 , . . . , S n and m reactions R 1 , . . . , R m 

. Using notations 

from Kaltenbach (2012) we write: 

R j = 

n ∑ 

i =1 

y i j S i −→ 

n ∑ 

i =1 

y ′ i j S i 

The y and y ′ represent the stoichiometric coefficients of the reac- 

tants and products of the reaction. The rate law associated with re- 

action R j will be written v j . This defines a dynamical system, in the 

form of an Ordinary Differential Equation (ODE): ˙ x = F (x ) where 

x i is the concentration of species S i and 

f i (x ) = 

∑ 

j 

v j (x ) · (y ′ i j − y i j ) 

3 http://lifeware.inria.fr/biocham4 . 
4 http://lemon.cs.elte.hu/ . 
5 For the sake of reproducibility, our programs and data are available at https: 

//lifeware.inria.fr/wiki/Main/Software#JTB18 . 
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