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a b s t r a c t 

In this paper, we assume that allele frequencies are random variables and follow certain statistical distri- 

butions. However, specifying an appropriate informative prior distribution with specific hyperparameters 

seems to be a major issue. Assuming that prior information varies over some classes of priors, we de- 

velop the concept of robust Bayes estimation into the context of allele frequency estimation. We first 

assume that the region of interest is a single locus and the prior information is represented in terms of a 

class of Beta distributions, and present explicit forms of the resulting Bayes and robust Bayes estimators. 

We then extend our results to biallelic k -loci and multi-allelic k -loci cases within the region of interest. 

We perform a simulation study to measure performance of the proposed robust Bayes estimators against 

some Bayes estimators associated with specific hyperparameters. The simulations reflect satisfactory per- 

formance of the proposed robust Bayes estimators when there is no evidence implying the actual prior 

distribution. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Allelic frequencies are one of the basic terms in several areas of 

population genetics and bioinformatics including linkage and as- 

sociation analysis, calculation of linkage disequilibrium, admixture 

mapping and somatic point mutation detection. In fact, many ge- 

netic epidemiological analyses are quite sensitive to estimates of 

allele frequencies ( Lockwood et al., 2001 ). Mandal et al. (2006) em- 

phasize that before one is able to apply model-dependent link- 

age analysis appropriately, allele frequencies have to be known. As 

well, they refer to some outstanding studies in the literature dis- 

cussing the effects of using wrong allele frequencies. According to 

Lockwood et al. (2001) , under-estimation of allele frequencies can 

lead to false linkage, whereas over-estimation can lead to reduced 

power. 

Allele frequencies can also be different among populations 

within a given geographical region. Weir and Hill (2002) re- 

mark that even if two populations are maintained under the 

same evolutionary conditions, the corresponding allele frequen- 

cies will be different due to the stochastic nature of the con- 

ditions. Lockwood et al. (2001) report that when studies in- 

volve multiple populations with different evolutionary histories, 

it is difficult to obtain accurate estimates of allele frequen- 
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cies. It is of interest to point out that, a lot of effort has 

been devoted to study the changes in allelic frequencies from 

one population to another, known as genetic drift. For example, 

Corander et al. (2003) discuss that genetic drift results in diver- 

gence of gene frequencies between populations of a common ori- 

gin when migration and mutation rates are low. A huge number 

of studies in the literature deal with the development of statisti- 

cal methods for estimation of the degree of population differentia- 

tion and the related topic of genetic population structure. Readers 

may refer to Bhatia et al. (2013) , Holsinger (1999) , Holsinger and 

Weir (2009) and Leinonen et al. (2013) , among many others. 

The literature is abundant of many works that have treated 

the allelic frequencies using the maximum likelihood (ML) ap- 

proach (e.g. Adrianto and Montgomery, 2012; Boehnke, 1991; 

Holsinger, 1999; Lange, 1995; 2003 , among many others). Although 

the ML estimators have often good properties, the ML procedure 

treats the underlying parameter of interest as an unknown and 

fixed parameter. In contrast to the ML approach, quite a num- 

ber of studies in the literature follow the Bayesian strategy. Re- 

ferring back to Crow and Kimura (1970) and Wright (1931, 1937) , 

Martínez et al. (2015) point out that allelic frequencies under cer- 

tain scenarios have random variation, and assume that allelic fre- 

quencies follow a Beta distribution with possibility of a genetic 

interpretation. As well, many others including Holsinger (1999) , 

Lange (1995, 2003) and Lockwood et al. (2001) assume that al- 

lelic frequencies follow the Beta prior. Lange (1995, 2003) remarks 

that the primary drawback of being Bayesian in the allelic fre- 
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quency estimation problem is that there is no obvious way of 

selecting reasonable hyperparameters. He overcomes this prob- 

lem by estimating the hyperparameters using the Newton’s ap- 

proximation method. Holsinger (1999) considers the Beta prior, 

as well. He also remarks that if there is no prior information 

about allele frequencies, a uniform distribution might be chosen, 

suggesting that every possible allele frequency is equally likely. 

Lockwood et al. (2001) propose a Bayesian hierarchical model that 

allows for explicit inclusion of prior information about both allele 

frequencies and inter-population divergence. Thus, it is necessary 

to treat the allelic frequencies as random variables and decision 

theory, especially the Bayesian decision theory, should be followed 

in order to derive optimal estimates of the allelic frequencies. 

As reviewed above, a major criticism in the Bayesian deci- 

sion theory is the uncertainty in prior elicitation. It is usually un- 

known if a given prior π (.) is best and yields a reliable solution. 

That would be ideal if one could specify a prior from relevant 

sources of information, but such sources are not always present. 

In such situations, Bayesians may refer to some objective (or non- 

subjective) priors. There are quite a number of valuable references 

reviewing several criteria for the construction of objective priors. 

Berger (2013) describes different methods of prior elicitation and 

extensively discusses the determination of non-informative priors, 

maximum entropy priors and right (or left) invariant Haar pri- 

ors. As well, he argues a number of criticisms concerning non- 

informative priors and refers to Jeffreys (1961) prior as the most 

popular non-informative prior. Ghosh (2011) reviews some spe- 

cific criteria for the selection of priors, and provides a “tools box”

containing many objective priors including Bernardo’s reference 

prior ( Bernardo, 1979 ), Jeffreys’ prior ( Jeffreys, 1961 ), probability 

matching priors, etc. See also Irony and Singpurwalla (1997) for an 

overview of the conceptual aspects of using non-informative priors. 

According to Berger (2013) , perhaps a negative feature of objective 

priors is that they are often numerous. For example, in the prob- 

lem of estimating a binomial parameter θ , Berger (2013) refers to 

four non-informative priors, namely, π1 (θ ) = 1 , π2 (θ ) = [ θ (1 −
θ )] −1 , π3 (θ ) ∝ [ θ (1 − θ )] −1 / 2 , π4 (θ ) ∝ θθ (1 − θ ) (1 − θ ) . However, 

using objective priors overcomes the problem of defining a prior 

distribution arbitrarily. 

The uncertainty problem might also happen when two or more 

statisticians agree on a prior distribution but there is a significant 

difference between their chosen hyperparameters. To exemplify, 

suppose a random variable X follows a Bernoulli ( θ )-distribution in 

which θ represents the allele frequency. A biologist might assign 

Beta (2, 2)-prior distribution for the desired parameter θ while an- 

other biologist might assert that Beta (2, 4)-prior would suit the 

data much better. In this situation, we have to give credit to both 

priors to make a reliable decision. To overcome such an uncertainty 

in prior elicitation, robust Bayesian methodology has been intro- 

duced in the literature. It solves the problem by minimizing some 

functionals giving credit to the underlying prior varying in a pre- 

specified class of priors, say �. In fact, robust rules are aimed at 

global prevention against bad choices of prior or hyperparameters 

( Karimnezhad et al., 2017; Karimnezhad and Parsian, 2014; 2018 ). 

For more discussion, refer to Arias-Nicolás et al. (2009) , Berger 

(1990, 2013) , Berger et al. (1994) and Insua et al. (1992) , among 

many others. 

In this paper, we address the use of Bayesian inference in the 

allele frequency estimation problem when there is an uncertainty 

in choosing a prior distribution. To provide a solution, we follow 

the robust Bayesian methodology and derive some PRGM rules. 

Section 2 provides some basic materials. Section 3 is the main fo- 

cus of our paper in which different Bayes and robust Bayes rules 

for estimating an allele frequency in a specific locus are presented. 

In Section 4 , we extend our results to k -loci and multi-allelic cases. 

A simulation study along with a comparison of performance of the 

Bayes and robust Bayes estimators is presented in Section 5 . Fi- 

nally, discussion and concluding remarks are provided in Section 6 . 

2. Materials and methods 

In this paper, we follow the Hardy–Weinberg equilibrium prin- 

ciple at every locus. Assuming that the capital letter “B” stands for 

a “reference allele”, suppose X 1 , X 2 and X 3 are random variables in- 

dicating the number of individuals with the genotypes AA, AB and 

BB. Denoting the frequency of the reference allele B by θ , where 

θ ∈ [0, 1], the Hardy–Weinberg equilibrium principle leads to the 

assumption that X = (X 1 , X 2 , X 3 ) 
T conditional on θ follows a tri- 

nomial distribution with the frequencies (1 − θ ) 2 , 2 θ (1 − θ ) and 

θ2 . The purpose here is to estimate the frequency θ by some deci- 

sion rule δ = δ(X ) ∈ D , where D refers to the class of all decision 

rules. It is necessary to remark that we distinguish between an es- 

timator (or a decision rule) and an estimate. An “estimator” is a 

rule δ( X ) which is based on the random variable X , and an “esti- 

mate” is a value δ( x ) which is based on a realization of X , i.e., x . 

Perhaps the most popular method in estimating a desired pa- 

rameter is the ML approach in which an estimator is derived by 

maximizing the likelihood function of a given sample over the pa- 

rameter space. 

Following the Hardy–Weinberg equilibrium principle, the likeli- 

hood function based on the observation x is given by 

L (θ | x ) = 

(2 n )! 

(2 x 1 + x 2 )!(x 2 + 2 x 3 )! 
θ x 2 + 2 x 3 (1 − θ ) 2 x 1 + x 2 , 

0 ≤ θ ≤ 1 , 

provided that x 1 + x 2 + x 3 = n . It is easy to verify that the ML 

estimator of the allelic frequency θ is given by δML (X ) = 

X 2 +2 X 3 
2 n = 

1 − X 2 + 2 X 1 
2 n . 

Notice that, as Martínez et al. (2015) point out, estimating the 

allelic frequency θ can be performed by only counting the two al- 

leles A and B, instead of counting the three genotypes AA, AB and 

BB, in a given sample. To do so, simply define Y = (Y 1 , Y 2 ) 
T , where 

Y 1 = X 2 + 2 X 3 and Y 2 = X 2 + 2 X 1 . By this transformation, the ran- 

dom variables Y 1 and Y 2 are the number of B and A alleles, respec- 

tively. The likelihood function on the basis of the observation y is 

then changed to 

L (θ | y) = 

(2 n )! 

y 1 ! y 2 ! 
θ y 1 (1 − θ ) y 2 , 0 ≤ θ ≤ 1 , 

provided that y 1 + y 2 = 2 n . Therefore, the allelic frequency θ is 

estimated by δML (Y ) = 

Y 1 
2 n = 1 − Y 2 

2 n . 

Using either the counts x or y leads to the same ML estimates 

which in fact roots from using the same likelihood functions, see 

Appendix B . This is true in general and both counts x and y should 

yield the same ML estimates. Nevertheless, sometimes working 

with the counts y makes calculations more simple and faster rather 

than the counts x . However, since it is not always possible to make 

a one-to-one map between y and x , we stick to using the counts x , 

unless otherwise stated. 

Now, as it is common in the decision theory, let the loss func- 

tion L (θ, δ) measure penalty of incorrect estimation of the param- 

eter of interest θ by a decision rule (estimator) δ ∈ D. Following 

the Bayesian inference, let the random variable θ have the proba- 

bility density function (pdf) π (.). Once the observation x is avail- 

able, the prior density π ( θ ) is updated and replaced by the pos- 

terior pdf π (.| x ), and then a Bayes point estimator δπ = δπ (X ) of 

the parameter of interest θ is derived by minimizing the posterior 

risk 

ρδ(π, X ) = E[ L (θ, δ) | X ] = 

∫ 
�
L (θ, δ) π(θ | X ) dθ, 

which in fact averages losses incurred when estimating θ by 

δ based on the posterior density π (.| X ). For more details see 
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