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H I G H L I G H T S

• Improves the Two-Step Filtering
method for phenology detection

• Calibrates the Simple Algorithm for
Yield estimates model for corn and soy-
bean

• Estimates the biomass and yield accu-
rately at a subfield scale

• A good correlation is found between ef-
fective light use efficiency and fAPARmax.
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The Simple Algorithm for Yield estimates (SAFY) is a crop yield model that simulates crop growth and biomass
accumulation at a daily time step. Parameters in the SAFYmodel can be determined from literature, in situ mea-
surements, or optical remote sensing data through data assimilation. For effective determination of parameters,
optical remote sensing data need to be acquired at high spatial and high temporal resolutions. However, this is
challenging due to interference of cloud cover and rather long revisiting cycles of high resolution satellite sensors.
Spatio-temporal fusion of multi-source remote sensing data may represent a feasible solution. Here, crop
phenology-related parameters in the SAFY model were derived using an improved Two-Step Filtering (TSF)
model from remote sensing data generated through spatio-temporal fusion of Landsat-8 and Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data. Remaining parameters were determined through an optimiza-
tion procedure using the same dataset. The SAFY model was then used for dry aboveground biomass and yield
estimation at a subfield scale for corn (Zeamays) and soybean (Glycinemax). The results show that the improved
TSFmethod is able to determine crop phenology stageswith an error of b5 days. After calibration, the SAFYmodel
can reproduce daily Green Leaf Area Index (GLAI) effectively throughout the growing season and estimate crop
biomass and yield accurately at a subfield scale using three Landsat-8 and 10MODIS images acquired for the sea-
son. This approach improves the accuracy of biomass estimation by about 4% in relative Root Mean Square Error
(RRMSE), compared with the SAFY model without forcing the phenology-related parameters. The RMSE of yield
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estimation is 146.33 g/m2 for corn and 82.86 g/m2 for soybean. The proposed framework is applicable for local-
scale or field-scale phenology detection and yield estimation.

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

To ensure food security for the growing world population, crop
growth needs to be monitored and crop production needs to be esti-
mated. Crop phenology is an indicator to understand agricultural re-
sponse to environmental conditions and is essential to estimate crop
yield (Sakamoto et al., 2010). Crop production related statistics are
also key indicators to understand seasonal ecosystem carbon exchange
and environmental impacts (Marshall and Thenkabail, 2015; Paruelo
et al., 2000).

Remote sensing provides spatially continuous information on crop
growth conditions, hence contributes to an improved monitoring of
crop production and management (Claverie et al., 2012). Statistical
models (Tucker and Sellers, 1986) and process-based models
(Jamieson et al., 1998) have been applied to estimate crop yield using
remotely sensed data. Statistical models typically attempt to build rela-
tionships between remotely sensed vegetation indices and in situ mea-
surements. However, they may be applicable only to specific growth
stages or specific regions (Cheng et al., 2016), and the accuracy may
vary with environmental conditions (Kuwata and Shibasaki, 2016).
Process-based models, such as the AquaCrop (Steduto et al., 2009),
CERES-Maize (Jones et al., 1986), STICS (Brisson et al., 2003) and
WOFOST (vanDipen et al., 1989), were originally developed to simulate
the key physical and physiological processes of the plant-soil-
atmosphere system to obtain daily dry aboveground biomass and final
grain yield (Marshall and Thenkabail, 2015; Sellers, 1985). The
process-based models need a large set of agro-environment variables
andmodel parameters, whichmay not be available or difficult to obtain
over large areas (Battude et al., 2016; Betbeder et al., 2016; Claverie
et al., 2012). The Simple Algorithm for Yield estimates (SAFY) model
(Duchemin et al., 2008) through combination of Monteith's light use ef-
ficiency (LUE) theory (Monteith, 1972) and Maas's leaf partitioning
function (Maas, 1990), simulates daily Green Leaf Area Index (GLAI)
and Dry Aboveground Mass (DAM) (i.e., dry aboveground biomass)
from the date of emergence. The parameters in the SAFY model can be
found in literature, obtained through in situ measurements, derived
from remote sensing data or determined through optimization. It has
been demonstrated that the SAFY model could estimate crop biomass
effectively when model parameters were determined from remotely
sensed phenological dates and optimized by time-series GLAI derived
from high spatial and temporal resolution data (Claverie et al., 2012;
Battude et al., 2016; Dong et al., 2016; Betbeder et al., 2016).

Some of the parameters in SAFY are linked with crop phenology in-
formation,which can be detected from time-series remote sensing data.
Traditional remote sensing-based phenology models define a few typi-
cal phenology stages according to the growth curve represented by
time-series of remotely sensed vegetation indices. For example, the
dates when the Normalized Difference Vegetation Index (NDVI) is
greater than a specific threshold are considered key phenological stages
(Sakamoto et al., 2005), or the inflection points (minimum/maximum
value of first derivative) of the NDVI curve are considered as the start
of season (SOS) and end of season (EOS) (Jeong et al., 2011). However,
phenology detection at a subfield scale using such methods is sensitive
to data noise induced by atmospheric constituents (Sakamoto et al.,
2010). Optimization of the SAFY model parameters at a subfield scale
requires remote sensing data at high spatial and temporal resolution.
High spatial resolution satellite data, such as Formosat-2, SPOT-4, and
Deimos-1, are costly, whereas free high spatial resolution data, such as
Landsat and Sentinel-2, may be unavailable on important dates due to
low temporal resolution and frequent cloud contamination over the

study site. Therefore, a research gap exists concerning how a sufficient
number of high spatial-temporal resolution remote sensing data can
be provided for calibration of process-based yield models.

The objective of this study is to propose a strategy to estimate
subfield-scale crop phenology, crop biomass and yield based on the
SAFY model calibrated with a remote sensing dataset generated
through the spatio-temporal fusion of Landsat-8 and MODIS images.
First, a recently proposed spatio-temporal vegetation index image
fusion method (STVIFM) developed by Liao et al. (2017) was used to
generate a NDVI time series with high spatial and-temporal resolution.
Then the fraction of Absorbed Photosynthetically Active Radiation
(APAR) absorbed by green canopy (fAPAR) was derived from the
NDVI, and the Two-Step Filtering (TSF) method proposed by
Sakamoto et al. (2010) was improved by using daily fAPAR simulated
by the Canopy Structure Dynamics Model (CSDM), to derive phenolog-
ical stages. Lastly, the phenology information was linked to the param-
eters in the SAFYmodel, and GLAI derived from the remote sensing data
was used to optimize the SAFY model in order to estimate pixel level
biomass and effective light use efficiency (ELUE), defined as equivalent
LUE under all environmental stresses excluding temperature stress.

2. Materials

2.1. Study area

The study area is located in theMixedwood Plains Ecozone in South-
western Ontario, characterized by abundant water supply and a rela-
tively mild climate during the growing season but harsh winters. The
area has productive soils for agriculture and a longer growing season
than most of the country. The common cropping practice in this region
is one harvest per year for annual field crops. The dominant crops are
winter wheat, corn and soybean. Generally, the winter wheat is seeded
in October of the previous year and harvested in July, while the corn and
soybean are seeded inMay and harvested in September or October. The
study area is about 14 km by 8 km, near the city of London, Ontario
(Fig. 1).

2.2. Field data collection

Field work was conducted weekly from 23 May to 21 September in
2015. Field data, including digital hemispherical photos (DHP), crop
phenology, and crop height, were collected for a total of 27 soybean
sample sites and 6 corn sample sites each time. For each sample site, 7
photographs were taken along one transect and then another 7 photo-
graphs along a parallel transect 1-m apart (Shang et al., 2014). Effective
LAI and fAPAR were derived from the photographs using the CAN-EYE
software (Weiss and Baret, 2017).

Crop type information was also surveyed in September 2015. Crop
biomasswasmeasured on 25 September and 2 October using a destruc-
tive method in relatively homogeneous locations for soybean (17 sam-
ples) and corn (15 samples). For corn, 5 plants were randomly selected
andmanually harvestedwithin a 5mby 5m area around each sampling
site. The number of corn plants was counted within this area to deter-
mine corn plant density. For soybean, plants were harvested from two
blocks of 0.25-m by 0.25-m within a 5 m by 5 m area. The number of
soybean plants was counted within this area to determine soybean
plant density. The harvested plants were placed in large plastic bags
and transferred back to the lab. The plants were separated into stems,
leaves and seeds and were weighed separately to obtain the fresh
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