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7 Abstract—Repeating spatiotemporal spike patterns exist

and carry information. How this information is extracted by

downstream neurons is unclear. Here we theoretically inves-

tigate to what extent a single cell could detect a given spike

pattern and what are the optimal parameters to do so, in par-

ticular the membrane time constant s. Using a leaky

integrate-and-fire (LIF) neuron with homogeneous Poisson’s

input, we computed this optimum analytically. We found that

a relatively small s (at most a few tens of ms) is usually opti-

mal, evenwhen the pattern is much longer. This is somewhat

counter-intuitive as the resulting detector ignores most of

the pattern, due to its fast memory decay. Next, we wondered

if spike-timing-dependent plasticity (STDP) could enable a

neuron to reach the theoretical optimum. We simulated a

LIF equipped with additive STDP, and repeatedly exposed

it to a given input spike pattern. As in previous studies, the

LIF progressively became selective to the repeating pattern

with no supervision, even when the pattern was embedded

in Poisson’s activity. Here we show that, using certain STDP

parameters, the resulting pattern detector is optimal. These

mechanisms may explain how humans learn repeating sen-

sory sequences. Long sequences could be recognized

thanks to coincidence detectors working at a much shorter

timescale. This is consistent with the fact that recognition

is still possible if a sound sequence is compressed, played

backward, or scrambled using 10-ms bins. Coincidence

detection is a simple yet powerful mechanism, which could

be the main function of neurons in the brain.

This article is part of a Special Issue entitled: Sequence

Processing � 2017 The Author(s). Published by Elsevier

Ltd on behalf of IBRO. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
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9 INTRODUCTION

10 Electrophysiologists report the existence of repeating

11 spike sequence involving multiple cells, also called

12‘‘spatiotemporal spike patterns”, with precision in the

13millisecond range, both in vitro and in vivo, lasting from

14a few tens of ms to several seconds (Tiesinga et al.,

152008). In sensory systems, different stimuli evoke differ-

16ent spike patterns (also called ‘‘packets”) (Luczak et al.,

172015). In other words, the spike patterns contain informa-

18tion about the stimulus. How this information is extracted

19by downstream neurons is unclear. Can it be done by

20neurons only one synapse away from the recorded neu-

21rons? Or are multiple integration steps needed? Can it

22be done by simple coincidence detector neurons, or

23should other temporal features, such as spike ranks, be

24taken into account? Here we wondered how far we can

25go with the simplest scenario: the readout is done by sim-

26ple coincidence detector neurons only one synapse away

27from the neurons involved in the repeating pattern. We

28demonstrate that this approach can lead to very robust

29pattern detectors, provided that the membrane time con-

30stants are relatively short, possibly much shorter than

31the pattern duration.

32In addition, it is known that mere repeated exposure to

33meaningless sensory sequences facilitates their

34recognition afterward, in the visual (Gold et al., 2014)

35and auditory modalities (Agus et al., 2010; Andrillon

36et al., 2015; Viswanathan et al., 2016) (see also contribu-

37tions in this special issue), even when the subjects were

38unaware of these repetitions. Thus, an unsupervised

39learning mechanism must be at work. It could be the so

40called spike-timing-dependent plasticity (STDP). Indeed,

41some theoretical studies by us and others have shown

42that neurons equipped with STDP can become selective

43to arbitrary repeating spike patterns, even without super-

44vision (Masquelier et al., 2008, 2009; Gilson et al., 2011;

45Humble et al., 2012; Hunzinger et al., 2012; Klampfl and

46Maass, 2013; Kasabov et al., 2013; Nessler et al., 2013;

47Krunglevicius, 2015; Yger et al., 2015; Sun et al., 2016).

48Using numerical simulations, we show here that the

49resulting detectors can be close to the theoretical

50optimum.

51FORMAL DESCRIPTION OF THE PROBLEM

52We assess the problem of detecting a spatiotemporal

53spike pattern with a single-LIF neuron. Intuitively, one

54should connect the LIF to the neurons that are

55particularly active during the pattern, or during a

56subsection of it. That way, the LIF will tend to be more

57activated by the pattern than by some other input. More

58formally, we note L the pattern duration, N the number

59of neurons it involves. We call Strategy #n the strategy
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60 which consists in connecting the LIF to theM neurons that

61 emit at least n spike(s) during a certain time window

62 Dt 6 L of the pattern. Strategy #1 is illustrated on Fig. 1.

63 We hypothesize that all afferent neurons fire

64 according to an homogeneous Poisson process with

65 rate f, both inside and outside the pattern. That is the

66 pattern corresponds to one realization of the Poisson

67 process, which can be repeated (this is sometimes

68 referred to a ‘‘frozen noise”). To model jitter, at each

69 repetition a random time lag is added to each spike,

70 drawn from a uniform distribution over ½�T;T� (a normal

71 distribution is more often used, but it would not allow

72 analytical treatment, see next section).

73 We also assume that synapses are instantaneous (i.e.

74 excitatory postsynaptic currents are made of Diracs),

75 which facilitate the analytic calculations.

76 For now we ignore the LIF threshold, and we want to

77 optimize its signal-to-noise ratio (SNR), defined as:
78

SNR ¼ Vmax � Vnoise

rnoise

; ð1Þ
8080

81where Vmax is the maximal potential reached during the

82pattern presentation, Vnoise is the mean value for the

83potential with Poisson’s input (noise period), and rnoise

84its standard deviation (see Fig. 1).

85A THEORETICAL OPTIMUM

86Deriving the SNR analytically

87We now want to calculate the SNR analytically. In this

88section, we assume unitary synaptic weights. Since the

89LIF has instantaneous synapses, and the input spikes

90are generated with a Poisson process, we have

91Vnoise ¼ sfM and rnoise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sfM=2

p
, where s is the

92membrane’s time constant (Burkitt, 2006). We assume

93that sfM � 1 (large number of synaptic inputs), so that

94the distribution of V is approximately Gaussian (Burkitt,

952006). Otherwise it would be positively skewed, thus a

96high SNR as defined by Eq. (1) would not guarantee a

97low false alarm rate.

98The number of selected afferents M depends on the

99strategy n. The probability that an afferent fires k times

100in the Dt window is given by the Poisson probability

101mass function: PðkspikesÞ ¼ kke�k

k!
, with k ¼ fDt. The

102probability that an afferent fires at least n times is thus

1031� e�k
Pn�1

k¼0
kk

k!
, and finally, on average:

104

M ¼ N 1� e�k
Xn�1

k¼0

kk

k!

 !
: ð2Þ

106106

107We now need to estimate Vmax. Intuitively, during the

108Dt window, the effective input spike rate, which we call

109r, is typically higher than fM, because we deliberately

110chose the most active afferents. For example, using

111Strategy #1 with Dt ¼ 10 ms ensures that this rate is at

112least 100 Hz per afferent, even if f is only a few Hz.

113More formally, Strategy #n discards the afferents that

114emit fewer than n spikes. This means on average the

115number of discarded spikes is Ne�kPn�1

k¼0
kkk

k!
¼

116Ne�kPn�1

k¼1
kk

ðk�1Þ! ¼ Ne�kk
Pn�1

k¼1
kk�1

ðk�1Þ! ¼ Ne�kk
Pn�2

k¼0
kk

k!
. Thus

117on average:
118

r ¼ N=Dt k� e�kk
Xn�2

k¼0

kk

k!

 !
¼ Nf 1� e�k

Xn�2

k¼0

kk

k!

 !
: ð3Þ
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121We note V1 ¼ sr the mean potential of the steady

122regime that would be reached if Dt was infinite. We now

123want to compute the transient response. The LIF with

124instantaneous synapses and unitary synaptic weights

125obeys the following differential equation:
126

sdV
dt

¼ �Vþ s
X
i

dðt� tiÞ; ð4Þ
128128

129where ti are the presynaptic spike times. We first make the

130approximation of continuity, and replace the sum of Diracs

131by an equivalent firing rate RðtÞ:
132

s
dV

dt
¼ �Vþ sRðtÞ: ð5Þ 134134

135RðtÞ should be computed on a time bin which is much

136smaller than s, but yet contains many spikes, to avoid

137discretization effects. In other words, this approximation

138of continuity is only valid for a large number of spikes in

Fig. 1. Detecting a spike pattern with a LIF neuron. (Top) Raster plot

of N ¼ 10
4
neurons firing according to an homogeneous Poisson

process. A pattern of duration L can be repeated (frozen noise). Here

we illustrated Strategy #1, which consists in connecting the LIF to all

neurons that fire at least once during a certain time window of the

pattern, with duration Dt 6 L. These neurons emit red spikes. Of

course they also fire outside of the Dt window. (Bottom) Typically the

LIF’s potential will be particularly high when integrating the spikes of

the Dt window, much higher than with random Poisson’s inputs, and

we want to optimize this difference, or more precisely the signal-to-

noise ratio (SNR, see text).
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