ARTICLE IN PRESS

Available online at www.sciencedirect.com

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

Advances in Space Research xxx (2018) xxx-xxx

www.elsevier.com/locate/asr

Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers

Yi Wang^{a,*}, Yuzhu Bai^a, Jianjun Xing^b, Gianmarco Radice^c, Qing Ni^d, Xiaoqian Chen^{a,*}

^a College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

^b School of Aeronautics and Astronautics, Central South University, Changsha 410083, China

^c School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

^d Manned Space System Research Center, Beijing 100000, China

Received 25 November 2017; received in revised form 1 July 2018; accepted 12 July 2018

Abstract

An equal-collision-probability-curve (ECPC) method is developed in this paper to address the problem of safe spacecraft proximity maneuvers. Considering the uncertainties' influence, the ECPC, which represents the curve of equal-collision-probability-points in the space around the target spacecraft, is firstly established. It is optimal to maneuver along the gradient direction of the ECPC, which is the fastest change in the ECPC. To calculate this direction, a novel auxiliary function, which has the same gradient direction as the collision probability function, is proposed. Compared to traditional collision probability functions, the proposed function does not contain transcendental elements and hence the computational burden can be greatly decreased while maintaining the necessary accuracy. Then, the safe close-range proximity maneuver generated by ECPC method can be implemented along the estimated gradient direction. Analytical validation is performed to assess the use of such collision avoidance scheme for safety critical operations. Furthermore, an improved Linear Quadratic Regulator (LQR) is designed to track the reference trajectory and a Lyapunov-based analysis verifies the stability of the overall closed-loop system. Numerical simulations show that the novel ECPC method is more computationally efficient than traditional methods while maintaining the same accuracy. Moreover, the novel scheme can be easily validated to guarantee the safety of the mission.

© 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Collision probability; Close-range proximity; Collision avoidance; Nonlinear relative motions

1. Introduction

On-orbit servicing (OOS) has attracted much attention in recent years due to the increasing number of on-orbit failures (Flores-Abad et al., 2014; Wu et al., 2018). Aiming at extending the operational lifetime or enhancing the capabilities of space assets, OOS comprises on-orbit assembly, inspection, maintenance, etc. (Bevilacqua et al., 2011; Spencer et al., 2016; Huang et al., 2016). Close-range oper-

* Corresponding authors.

ations are not only an essential element of OOS, but also a key technology of distributed space missions (Barnhart et al., 2007, 2009; Dutta et al., 2012). In the close proximity phases, the relative distance between the two spacecraft is small, and the orbital planes of them are well aligned. Any deviation of the reference trajectory from the chaser spacecraft to the target spacecraft may lead to a collision. Thus, the associated stringent safety requirements are one of the most critical aspects for the close range proximity operations. To guarantee the safe operations, the artificial potential function (APF) is often utilized (Bevilacqua et al., 2011; Nag and Summerer, 2013; Palacios et al., 2015; Spencer et al., 2016; Ni et al., 2017; Huang et al., 2017;

https://doi.org/10.1016/j.asr.2018.07.007

0273-1177/© 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Wang, Y., et al. Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers. Adv. Space Res. (2018), https://doi.org/10.1016/j.asr.2018.07.007

E-mail addresses: wangyi15@nudt.edu.cn (Y. Wang), chenxiaoqian@ nudt.edu.cn (X. Chen).

ARTICLE IN PRESS

Y. Wang et al. | Advances in Space Research xxx (2018) xxx-xxx

Nomenclature

O_{I}	the center of the Earth	∇
$X_{\rm I}, Y_{\rm I}$	$Z_{\rm I}$ the three axis in inertial coordinate	f
0	the target spacecraft's center of mass	, K
v v 7	the three axis in LVLH coordinate	k
л, у, 2 Г	the position vector of chaser spacecraft in inertial	7
¹ Chaser	apordinate	2 k
	the next in vector of tenest encourage in inertial	л т
<i>r</i> _{Target}	the position vector of target spacecraft in inertial	Λ
	coordinate	_
t, t_1	the time parameter	6
x_t, y_t	the relative position parameter	n
v_{xt}, v_{yt}	the relative velocity parameter	6
u_x, u_v	the relative control parameter	6
\mathbf{r}_{1-t}	the relative position vector at time t	θ
v_{1-t}	the relative velocity vector at time t	θ
u_{1-t}	the relative control vector at time t	
₁ _,	the gravitational constant of the Earth	θ
a a	the semi-major axis of the orbit of target space-	
u	craft	2
и	the angle velocity of target spacecraft	14
n V	the state vector	Г
	the state vector	\mathcal{L}
X_0	the initial state vector	v_l
A	the state dynamics matrix	n
B	the control mapping matrix	D
$\mathbf{\Phi}(t,t_0)$	the transition matrix from	a_1
$\Phi_{rr}(t, t)$	$(\Phi_{rr}(t,t_0), \Phi_{rr}(t,t_0)),$ the component of the	
¢	$\mathbf{D}_{\boldsymbol{v}\boldsymbol{v}}(t,t_0), \mathbf{\Phi}_{\boldsymbol{v}}(t,t_i)$ the component of the	v_l^l
	transition matrix	
t_0	the initial time	n
t_f	the final time	F
$ar{X}$	the mean value of X	F
δX	the error of state vector	F
$\delta ar{X}$	the mean value of δX	v
$C_{\delta X_0}$	the covariance matrices of the initial navigation	
0210	uncertainties in LVLH frame	.,/
$C_{\delta n}$	the covariance matrices of the control uncertain-	V
$\sim o v_i$	ties in LVLH frame	
C	the uncertainty covariance matrix of the state vec-	V
$C_{\partial X}$	tor	
C.	the uncertainty covariance matrix of the volctive	x_2
$\mathbf{C}_{\delta \mathbf{r}_{1-t}}$	ne uncertainty covariance matrix of the relative	x
37	position vector	ζ(
IV	the number of control impulses	
σ_{xt}, σ_{yt}	the uncertainty covariance matrix parameter of	X
	the relative position	X
$\sigma_{vxt}, \sigma_{vyt}$	t the uncertainty covariance matrix parameter of	е
	the relative velocity	
x_{2-t}, y_{2-t}		
_	coordinates used in probability density function	n
Ω	the geometry area of the target	 11
δt	the error of the time	u V
δr_1	the required deflections	n r
R_{c}	the radius of the target's volume	rr T
1.U Ka	the relative position in area O	J
P_{2-t}	the value of two dimension mechability density	X
Γ_c	function	ι
	runction	

∇	the gradient symbol
f g Va	V_1 V_2 h the auxiliary function
K K. K	a_1, b_2, a_1 the auxiliary parameters
$\mathbf{K}, \mathbf{K}_1, \mathbf{K}$	\mathbf{K}_{c} , \mathbf{S}_{c} , \mathbf{S}_{c} , the auxiliary matrices
м3, м4, л Ор	$\mathbf{K}_6, \mathbf{S}_1, \mathbf{S}_2$ the auxiliary matrices
<u>у</u> , л <i>V</i>	the entirel feedback matrix in LOD controller
Λ ₂ Κ	the optimal feedback matrix in LQR controller
K 5	the optimal feedback matrix in improved LQR
~	controller
G_1	the true gradient direction of ECPC
norm(*)	the mold of vector*
G	the gradient of ECPC
G_0	the estimated gradient direction of ECPC
θ_1	the angle of true gradient direction
θ_2	the angle of estimated gradient direction by
	ECPC method
θ_3	the angle of estimated gradient direction by APF
	method
λο	a positive constant that shapes the magnitude of
	repulsive potential
D_0	the radius of the hazardous zone
paral	the magnitude of relative parallel velocity
paral	the unit vector of relative parallel position
D_{1}	the braking distance
2 <u>s</u> 7	the maximum acceleration of the chaser space-
*max	craft
perpen	the magnitude of the relative perpendicular veloc-
t_1	ity
perpen	the unit vector perpendicular to \mathbf{r}^{paral}
\mathbf{r}_{t_1}	the repeal forms
repel F	the negative force
r _{oparal} F	the norman disular former
r operpen paral	the relative marginal value its when the anonecoust
v_{1-t_0}	the relative parallel velocity when the spacecraft
paral	arrived at the boundary of the hazardous zone
$v_{1-t_1}^{r_1, \ldots, r_n}$	the relative parallel velocity when the spacecraft
paral	flies in the hazardous zone
$v_{1-t_f}^{purul}$	the relative parallel velocity when the spacecraft
	reaches the minimum relative distance
<i>x</i> ₂	one zero point respect to $h(r_{1-t_1})$
x ₃	the maximum value of the r_{1-t_1}
50	the minimum relative distance between the chaser
	spacecraft and the target spacecraft
X_a	the actual relative state vector
X_p	the reference relative state vector
e	the error between the actual relative state vector
	and the reference relative state vector
u _T	the control impulse for orbital transformation
u [*]	the optimal control in LQR controller
u_{1}^{*}	the optimal control in improved LOR controller
Kunnar	the upper bound on the $K_{c}^{T}K_{c}$
n – upper M	the mass of the chaser spacecraft
L. J.	the cost function
0, 01	

- $K_{a-1}(t)$ the "virtual" actual state vector U, ς, ψ the auxiliary parameter in APF method

Please cite this article in press as: Wang, Y., et al. Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers. Adv. Space Res. (2018), https://doi.org/10.1016/j.asr.2018.07.007

Download English Version:

https://daneshyari.com/en/article/11019692

Download Persian Version:

https://daneshyari.com/article/11019692

Daneshyari.com