Accepted Manuscript

Complex exchange coupling mechanisms in SRO/BFO/Fe heterostructures

S.G. Greculeasa, G. Schinteie, L.M. Hrib, V. Stancu, I. Pasuk, A. Kuncser, V. Kuncser

PII: S0925-8388(18)33448-0

DOI: 10.1016/j.jallcom.2018.09.208

Reference: JALCOM 47627

To appear in: Journal of Alloys and Compounds

Received Date: 24 May 2018

Revised Date: 15 September 2018 Accepted Date: 17 September 2018

Please cite this article as: S.G. Greculeasa, G. Schinteie, L.M. Hrib, V. Stancu, I. Pasuk, A. Kuncser, V. Kuncser, Complex exchange coupling mechanisms in SRO/BFO/Fe heterostructures, *Journal of Alloys and Compounds* (2018), doi: https://doi.org/10.1016/j.jallcom.2018.09.208.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Complex exchange coupling mechanisms in SRO/BFO/Fe heterostructures

S.G. Greculeasa, G. Schinteie, L.M. Hrib, V. Stancu, I. Pasuk, A. Kuncser, V. Kuncser

National Institute for Materials Physics, P.O.Box MG-7, 77125, Magurele, Romania

Abstract

Temperature dependent interfacial coupling mechanisms in SRO/BFO/Fe layered structures were

investigated. The BFO/Fe heterostructures were prepared by PLD and sputtering, respectively,

on the STO(0 0 1) substrate with a 20 nm SRO buffer layer. An annealing treatment in external

magnetic field was further applied. Complex characterizations with X-ray diffraction, atomic

force microscopy, Transmission Electron Microscopy, Mössbauer spectroscopy, magneto-optic

Kerr effect and SQUID magnetometry were performed. Before annealing, the films show good

crystallization and epitaxy of the SRO and BFO layers with smooth interfaces. Two coupling

mechanisms of the ferromagnetic layers (top Fe and bottom SRO, respectively) to the epitaxial

BFO film with mainly antiferromagnetic structure were evidenced in the as deposited samples at

low temperatures. Negative exchange bias fields of up to 67(10) Oe and 37(5) Oe at low

temperatures were observed for the two ferromagnetic components, respectively, depending on

the thickness of the Fe layer. The field annealing treatments induce a specific morphology and

magnetic spin structure at the interface of the spacer BFO layer, giving rise to a long range

magnetostatic coupling between the two ferromagnetic films, in addition to the interfacial

couplings. However, the experimentally evidenced Fe clusters penetrating the BFO/Fe interface

toward the BFO layer give support for this interaction. As an additional consequence, a

considerable enhancement of both uniaxial and unidirectional anisotropies as well as an

increased blocking temperature of exchange bias were obtained. The involved exchange coupling

mechanisms were discussed in detail.

Keywords: multiferroic heterostructures, exchange bias, magnetometry, Mössbauer spectroscopy

Corresponding author: V. Kuncser

National Institute for Materials Physics, P.O. Box MG 7, 77125, Magurele, Romania

e-mail: kuncser@infim.ro

1

Download English Version:

https://daneshyari.com/en/article/11019976

Download Persian Version:

https://daneshyari.com/article/11019976

<u>Daneshyari.com</u>