ARTICLE IN PRESS

Tetrahedron xxx (2018) 1-11

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of *N*-aminopyrazoles by Fe(II)-catalyzed rearrangement of 4-hydrazonomethyl-substituted isoxazoles

Ekaterina E. Galenko, Viktor K. Ivanov, Mikhail S. Novikov, Andrey A. Zolotarev, Alexander F. Khlebnikov*

Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia

ARTICLE INFO

Article history: Received 30 July 2018 Received in revised form 4 September 2018 Accepted 5 September 2018 Available online xxx

Keywords: N-aminopyrazole Hydrazone Isoxazole Rearrangement Fe-catalysis

ABSTRACT

A novel effective method is reported for the preparation of 1-amino-1H-pyrazole-4-carboxylic acid derivatives by Fe(II)-catalyzed rearrangement of isoxazoles having (2,4-dinitrophenylhydrazono)methyl substituent at C4. The reaction proceeds smoothly for both E and Z isomers of 4-(hydrazonomethyl) isoxazoles, and this means it is not necessary to separate mixtures of E/Z-isomers of the hydrazones prepared by reaction of 5-methoxy/pirrolidino-4-carbonylisoxazoles and 2,4-dinitrophenylhydrazine. The rearrangement proceeds via the formation of an aziridine intermediate which can be isolated in certain cases. The 2-nitro group in the synthesized 1-[(2,4-dinitrophenyl)amino]-1H-pyrazole-4-carboxylic esters can be selectively reduced in two steps via acylation of the amino group followed by hydrogenation-deacylation using H_2 -Pd/C.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many medicines, including the best-selling drugs, are derivatives of heterocycles from the list of privileged structures of medical chemistry [1]. Pyrazole is one such privileged structure [2]. N-aminopyrazole derivatives in particular exhibit antiprotozoal activity [3,4] and are patented as agents for the treatment of depression [5,6] and heart failure [6]. N-Aminopyrazoles are also used as intermediates in the production of a variety of nitrogencontaining heterocycles [7]. The main method for the preparation of N-aminopyrazoles is the electrophilic amination of a pyrazole nitrogen. Recyclizations of hydrazinyl-substituted isoxazoles, heterocyclization with the participation of azides and reduction of nitro derivatives are less often used [7]. The thermal rearrangement of isoxazol-5-ylhydrazines gives 1-aminopyrazolin-5-ones [8]. Photochemical rearrangement of isoxazolopyridines [9] and isoxazolopyridazines [10], containing a hydrazinyl substituent in the azine ring, yields N-aminopyrazole derivatives fused to the corresponding azine ring in low yields. Catalytic transformation of isoxazoles into to N-aminopyrazole derivatives is to the best of our knowledge unknown [7,11].

E-mail address: a.khlebnikov@spbu.ru (A.F. Khlebnikov).

https://doi.org/10.1016/j.tet.2018.09.015 0040-4020/© 2018 Elsevier Ltd. All rights reserved. Earlier we found that isoxazoles containing a C=C unsaturated moiety in the C4 position rearrange to the corresponding 1*H*-pyrrole derivatives under Fe(II)-catalysis [12]. Thus 4-vinylisoxazoles are precursors of substituted pyrroles [12a], whereas 4-arylisoxazoles give substituted indoles [12b] (Scheme 1). We hypothesized that a replacement of the C=C moiety, which participates in the 1,5-cyclization of transient species during rearrangement of 4-vinylisoxazoles, by another unsaturated fragment such as RNHN = C would lead to the corresponding *N*-aminopyrazoles as products of the cyclization (Scheme 1).

2. Results and discussion

To check this hypothesis we tried to synthesize some hydrazones of 4-carbonyl-5-methoxyisoxazoles **1**, which were prepared according to modified published procedures by acylation of the corresponding 3-substituted isoxazol-5(4H)-ones **2**, followed by methylation of the resulting 4-acyl-5-hydroxyisoxazoles **3** with diazomethane (Scheme 2).

Unexpectedly, it was found that the corresponding hydrazones were not formed by the reactions of 4-carbonylisoxazoles $\mathbf{1}$ with hydrazine, phenylhydrazine and tosylhydrazine. Only the reaction of 2,4-dinitrophenylhydrazine (DNPH) with isoxazoles $\mathbf{1}$ gave hydrazones $\mathbf{4}$, either as the E-isomer or as a mixture of E/Z-isomers, usually in good yields (Table 1). The E/Z-isomers were separated by

^{*} Corresponding author.

2

Previous work

Scheme 1. The routes of Fe(II)-catalyzed transformations of izoxazoles with unsaturated substituent in the C4 position.

chromatography and their structures were established by standard spectroscopic methods. The stereochemistry of the isomers of hydrazones **4a-e,g,h** were elucidated by 2D-NOESY ¹H NMR spectroscopy, whereas XRD-analysis was used for hydrazone Z-**4f** (Fig. 1).

Special experiments have shown that the interconversion of the

E and Z isomers of hydrazones 4 does not occur by boiling their solutions in acetonitrile or methanol. This would mean that a barrier for the isomerization is too high for it to occur under these conditions. Quantum-chemical calculations at the B3LYP/6-31G+(d,p) level of the E and Z isomers of hydrazones **4a-e** and of the transition states of their Z/E-isomerization were performed to evaluate the corresponding energy barriers. The barriers for the transformation of the Z-hydrazones **4a-e** to the corresponding Eisomers are in the region of 35–37 kcal mol⁻¹ and for the back transformation are in the region of 34–37 kcal mol⁻¹. The calculated barriers are high enough to prevent isomerization at the temperatures used in this study. It is noteworthy that in the case when only the E isomer (4a, b, d) was formed in the reaction of DNPH with 4-carbonylisoxazoles **1a**, **b**, **d** the corresponding Z isomer according to the calculation is thermodynamically more stable. The ratio of isomers is, therefore, defined by the reaction kinetics.

Next, we studied the reactivity of hydrazones **4a-h** towards $FeCl_2$, including the effect of stereochemistry. The rearrangement of the hydrazone of isoxazolecarbaldehyde *E-***4a** proceeds easily already at rt to give pyrazole **5a** in 94% yield after 2 d (Table 2, entry 1). Changing the R^2 substituent from H to Et has no influence on the time of rearrangement (Table 2, entry 2), whereas introduction of a nitro group into the phenyl moiety (R^1) makes the reaction a little slower, *E-* and *Z-*isomers react identically (Table 2, entry 3–5). Isomer *Z-***4e** rearranges much faster than isomer *E-***4e** at rt, but at 70 °C both the individual isomers as well as a mixture of isomers gives **5e** in 77%–92% yield only after 1 d (Table 2, entry 7–9). Steric congestion in compound **4f** with two Ph-substituents makes the rearrangement at rt slower. The reaction of isomer *Z-***4f** was also accompanied by formation of some unidentified products. The isomer *E-***4f** under these conditions afforded azirine **6**, which

O
$$(R^2CO)_2O$$
 O OH O OMe
O or R^2COCI
 R^2
 R^2

Scheme 2. Synthesis of starting 4-carbonyl-5-methoxyisoxazoles **1.**

Table 1 Hydrazones of 4-carbonylisoxazoles.

entry	R^1	R ²	Х	Yield of 4, ^a %	Z/E ratio, ^b %	Z, TS ^{Z/E} , E; MeOH ^c	Z, TS ^{Z/E} , E; MeCN ^c
1	Ph	Н	MeO	a , 91	0/100	0.0, 35.4, 1.7	0.0, 35.4, 1.8
2	Ph	Et	MeO	b , 84	0/100	0.0, 36.7, 1.0	0.0, 36.7, 1.1
3	$4-NO_2C_6H_4$	Et	MeO	c , 83	26/74	0.0, 37.0, 0.4	0.0, 37.0, 0.3
4	thien-2-yl	Et	MeO	d , 59	0/100	0.0, 36.8, 1.5	0.0, 36.8, 1.5
5	Me	Ph	MeO	e , 66	46/54	0.0, 35.7, 0.0	0.0, 35.8, 0.3
6	Ph	Ph	MeO	f , 85	65/35		
7	$4-MeC_6H_4$	3-ClC ₆ H ₄	MeO	g , 67	57/43		
8	Ph	Н .	(CH ₂) ₄ N	h , 85	0/100		

a Isolated yield

b According to 1H NMR analysis.

^c Relative Gibbs free energies of *Z*, *E* isomers **4** and transition states of their *Z/E*-isomerization computed at the DFT B3LYP/6-31 + G(d,p) level (kcal mol⁻¹, 298 K, PCM model for MeOH and MeCN).

Download English Version:

https://daneshyari.com/en/article/11020164

Download Persian Version:

https://daneshyari.com/article/11020164

Daneshyari.com