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a b s t r a c t

Initial screening experiments often leave some problems unresolved, adding follow-up
runs is needed to clarify the initial results. In this paper, a technique is developed to add
additional experimental runs to an initial supersaturated design. The added runs are gener-
atedwith respect to the BayesianDs-optimality criterion and the procedure can incorporate
the model information from the initial design. After analysis of the initial experiment with
several methods, factors are classified into three groups: primary, secondary, and potential
according to the times that they have been identified. The focus is on those secondary
factors since they have been identified several times but not so many that experimenters
are sure that they are active, the proposed Bayesian Ds-optimal augmented design would
minimize the error variances of the parameter estimators of secondary factors. In addition,
a blocking factorwill be involved to describe themean shift between two stages. Simulation
results show that the method performs very well in certain settings.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Screening is the first phase of an experimental study on systems and simulation models. Its purpose is to eliminate
negligible factors so that efforts may be concentrated upon just the important ones (active factors). Using a supersaturated
design (SSD) whose run size is not enough for estimating all the main effects may be considered when a large experiment is
infeasible in practice. SSDs were introduced by Box (1959), but not studied further until the appearance of the work by Lin
(1993) andWu (1993). Many developments in the area have taken place over the last two decades. For further details, please
refer to Georgiou (2014), Sun et al. (2011) and the references therein.

The analysis of SSDs is challenging due to the inherent non-full rank nature of the design matrix and the fact that the
columns of the model matrix are correlated. As a result, the effects of different factors are aliased with one another making
it very difficult to identify the active factors correctly. Methods to overcome these problems include regression procedures,
such as forward selection (Westfall et al., 1998), stepwise and all-subsets regression (Abraham et al., 1999), partial least
squares methods (Zhang et al., 2007; Yin et al., 2013), shrinkage methods, including SCAD (Li and Lin, 2002) and Dantzig
selector (Phoa et al., 2009) and Bayesian methods (Beattie et al., 2002; Chen et al., 2011, 2013; Huang et al., 2014). Readers
can refer to Salawu et al. (2015) and Georgiou (2014). However, different methods may give different results and nomethod
is infallible.

If we want to clarify or confirm initial results and guide the next phase of experimentation, adding follow-up runs to
the initial design is a useful way. As a matter of fact, performing extra experimental runs is the only data-driven way
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to break confounding patterns and to disentangle confounded effects. Suppose an SSD of n1 runs and k 2-level factors,
denoted by SSD(n1, k), has been run and now the experimenter can afford n2 more runs to resolve ambiguities, the target
is to find the best way to augment the original design to reduce uncertainty and get the most information out of the final
SSD(n1+n2, k). Gupta et al. (2010) considered the problem for 2-level SSDs firstly: E(s2)-optimal designs (proposed by Booth
and Cox, 1962) are augmented with additional runs to create a new class of ‘‘extended E(s2)-optimal’’ designs. Then Gupta
et al. (2012) extended themethod to s-level designs. Suen and Das (2010) also used a similar approach to add or remove one
row from an existing E(s2)-optimal design to make a new E(s2)-optimal design. Qin et al. (2015) studied the optimality of
the extended design generated by adding few runs to an existing E(χ2)-optimal mixed-level SSD and their paper covers the
work of Gupta et al. (2010, 2012) as two special cases. All of these methods, however, did not consider using the information
from the initial analysis and design when adding runs. Gutman et al. (2014) proposed an SSD augmentation strategy using
the BayesianD-optimality criterion, they considered the information gained from the initial design, SSD(n1, k), as a prior, and
constructed the final SSD(n1+n2, k) to reduce the error variances of the parameter estimators under the Bayesian paradigm.

When adding runs to fractional factorial designs, two optimality criteria, D-optimality and Ds-optimality, are often used.
The Ds-optimal design approach would be applied if the experimenters emphasize precise estimation for the ‘‘subset’’ of
the experimental factors. Kiefer and Wolfowitz (1961) defined a design as Ds-optimal if it minimizes the determinant of
the normalized covariance sub-matrix of estimators of the chosenmodel parameters while treating the other parameters as
nuisance parameters. The use of Ds-optimality designs would result in increased power since the parameters of interest are
estimated more precisely (Atkinson and Donev, 1992; Casey et al., 2005). In this paper, we will combine the Ds-optimality
criterion with the Bayesian technique to propose an alternative approach, which is different from the Bayesian D-optimal
augmentation in two aspects: the principle of factor classification and the optimal criterion.

The next section reviews the relevant background firstly, thenwe propose the new algorithmic augmentation strategy for
SSDs using information from the initial runs in Section 3. Section 4 compares the performance of the Bayesian Ds-optimal
augmented designs with the Bayesian D-optimal augmented designs by several highlighting examples. Some concluding
remarks are provided in Section 5.

2. Bayesian D-optimality and model selection methods

In this section, we briefly review the approach for developing augmenting Bayesian D-optimal designs in the context of
linear models and some model selection methods applied to SSDs.

2.1. Bayesian D-optimality

Consider the linear model

y = β01n + β1x1 + · · · + βkxk + ε = Xβ + ε,

where y is an n×1 vector of observations, β0 is the intercept term, 1n is an n×1 column vector with all elements unity, xi is
an n × 1 vector of settings for the ith factor, X is the n × p design matrix with p = k + 1, β is the p × 1 vector of coefficients
to be estimated, and ε ∼ N(0n, σ

2In) is the noise vector, where 0n is an n × 1 column vector with all elements zero, and
In is an identity matrix of order n. In a two-level factorial design, each factor setting can be coded as ±1 (or simply ±). Let
the prior distribution of the parameters be β | σ 2

∼ N(β0, σ
2R−1), where β0 is the mean of prior distribution for β, R is

a prior covariance matrix, and the conditional distribution of y given β be y | (β, σ 2) ∼ N(Xβ, σ 2In). Then the posterior
distribution for β given y is

β | y ∼ N(b, σ 2(X TX + R)−1),

where b = (X TX + R)−1(X Ty + Rβ0).
Let X1 be a model matrix corresponding to the initial n1 runs of an experiment with response vector y1, and X2 be the

additional n2 rows with response vector y2. That is

X =

(
X1
X2

)
, y =

(
y1
y2

)
.

Once the data from the first stage have been collected, many different analysis methods can be employed to identify active
factors and the information from the analysis may be used as a prior. Gutman et al. (2014) pointed out that the experimenter
can classify a factor as primary term (highlighted by an analysis method or many methods), secondary term (if there is an
indication the factormay be active, but it is not a predominant), or potential term (with little evidence to suggest it is active).
Then prior distributions would be assigned as follows. Since the primary terms are likely to be active, their coefficients are
specified to have a diffuse prior variance tending to infinity (DuMouchel and Jones, 1994), which implies that the primary
terms are likely to bemuch different from zero. On the other hand, potential terms are unlikely to have large effects, and it is
proper to assume that they have a relative small variance. For secondary terms, they may or may not be active, so their prior
variances should be finite, but larger than that for potential terms.We assume that the factors inX have been reordered after
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